Skip to main content

Advertisement

Log in

Multi-objective design optimization of heat exchangers using elitist-Jaya algorithm

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

This paper proposes an elitist-Jaya algorithm for multi-objective design optimization of shell-and-tube and plate-fin heat exchangers. Jaya algorithm is a newly proposed algorithm and it is not having any algorithmic-specific parameters to be set except the common control parameters of number of iterations and population size. Elitist version of the Jaya algorithm is proposed in this paper to simultaneously optimize the total annual cost and effectiveness of the heat exchangers. Two heat exchanger design problems are considered for investigating the performance of the proposed algorithm. The same problems were earlier optimized by other researchers using genetic algorithm and modified teaching-learning-based optimization algorithm. The consequences of common controlling parameters e.g. number of iterations, population size and elite size, on the proposed algorithm’s performance is tested with various combinations of the same. The results of computational experiments proved the superiority of the proposed algorithm over the latest reported approaches used for the design optimization problems of heat exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang, J., Oh, S.R., Liu, W.: Optimization of shell-and -tube heat exchangers using a general design approach motivated by constructal theory. Int. J. Heat Mass Transf. 77, 114–1154 (2014)

    Article  Google Scholar 

  2. Yang, J., Oh, S.R., Liu, W., Jacobi, A.M.: Optimization of shell-and-tube heat exchangers conforming to TEMA standards with general design approach motivated by constructal theory. Energy Convers. Manag. 78, 468–476 (2014)

    Article  Google Scholar 

  3. Selbas, O., Kızılkan, M., Reppich, A.: New design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chem. Eng. Proc. 45, 268–275 (2006)

    Article  Google Scholar 

  4. Guo, J., Cheng, L., Xu, M.: Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm. Appl. Therm. Eng. 29, 2954–2960 (2009)

    Article  Google Scholar 

  5. Huang, S., Zhenjun, M., Cooper, P.: Optimizing heat exchanger networks with genetic algorithms for designing each heat exchanger and condensers. Appl. Therm. Eng. 29, 3437–3444 (2009)

    Article  Google Scholar 

  6. Fettaka, S., Thibault, J., Gupta, Y.: Design of shell-and-tube heat exchangers using multi objective optimization. Int. J. Heat Mass Transf. 60, 343–354 (2013)

    Article  Google Scholar 

  7. Ponce-Ortega, J.M., Serna-Gonzalez, M., Jimenez-Gutierrez, A.: Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Appl. Therm. Eng. 29, 203–209 (2009)

    Article  Google Scholar 

  8. Ozcelik, Y.: Exergetic optimization of shell-and-tube heat exchangers by genetic based algorithm. Appl. Therm. Eng. 27, 1849–1856 (2007)

    Article  Google Scholar 

  9. Amini, M., Bazargan, M.: Two objective optimization in shell-and-tube heat exchangers using genetic algorithm. Appl. Therm. Eng. 69, 278–285 (2014)

    Article  Google Scholar 

  10. Daroczy, L., Janiga, G., Thevenin, D.: Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization. Energy 65, 364–373 (2014)

    Article  Google Scholar 

  11. Khosravi, R., Khosravi, A., Nahavandi, S., Hajabdollah, H.: Effectiveness of evolutionary algorithms for optimization of heat exchangers. Energy Convers. Manag. 89, 281–288 (2015)

    Article  Google Scholar 

  12. Caputo, A.C., Pelagagge, P.M., Salini, P.: Heat exchanger design based on economic optimization. Appl. Therm. Eng. 28, 1151–1159 (2008)

    Article  Google Scholar 

  13. Sanaye, S., Hajabdollahi, H.: Multi-objective optimization of shell and tube heat exchangers. Appl. Therm. Eng. 30, 1937–1945 (2010)

    Article  Google Scholar 

  14. Sanaye, S., Hajabdollahi, H.: Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm. Appl. Energy 30, 1937–1945 (2010)

    Article  Google Scholar 

  15. Wong, J.Y.Q., Sharma, S., Rangaiah, G.P.: Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Appl. Therm. Eng. 93, 888–899 (2016)

    Article  Google Scholar 

  16. Sadeghzadeh, H., Ehyaei, M.A., Rosen, M.A.: Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms. Energy Convers. Manag. 93, 84–91 (2015)

    Article  Google Scholar 

  17. Mishra, M., Das, P.K., Sarangi, S.: Optimum design of crossflow plate-fin heat exchangers through genetic algorithm. Int. J. Heat Exch. 5, 379–402 (2004)

    Google Scholar 

  18. Bidabadi, M., Sadaghiani, A.K., Azad, A.V.: Spiral heat exchanger optimization using genetic algorithm. Sci. Iran 20, 1445–1454 (2013)

    Google Scholar 

  19. Jena, S., Patro, P., Behera, S.S.: Multi-objective optimization of design parameters of a shell & tube type heat exchanger using genetic algorithm. Int. J. Curr. Eng. Technol. 3, 1379–1386 (2013)

    Google Scholar 

  20. Huang, S., Ma, Z., Wang, F.: A multi-objective design optimization strategy for vertical ground heat exchangers. Energy Build. 87, 233–242 (2015)

    Article  Google Scholar 

  21. Selleri, T., Najafi, B., Rinaldi, F., Colombo, G.: Mathematical modeling and multi-objective optimization of a mini-channel heat exchanger via genetic algorithm. J. Therm. Sci. Eng. Appl. 5, art. no. 031013 (2013)

  22. Hajabdollahi, H., Ahmadi, P., Dincer, I.: Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm. J. Thermophys. Heat Transf. 25, 424–431 (2011)

    Article  Google Scholar 

  23. Rao, R.V., Patel, V.K.: Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. Int. J. Therm. Sci. 49, 1712–1721 (2010)

    Article  Google Scholar 

  24. Turgut, O.E.: Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of plate fin heat exchangers. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.05.003 (Accepted for publication)

  25. Ravagnani, M.A.S.S., Silva, A.P., Biscaiac, E.C., Caballero, J.A.: Optimal design of shell-and tube heat exchangers using particle swarm optimization. Ind. Eng. Chem. Res. 48(6), 2927–2935 (2009)

    Article  Google Scholar 

  26. Patel, V.K., Rao, R.V.: Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Appl. Therm. Eng. 30, 1417–1425 (2010)

    Article  Google Scholar 

  27. Mariani, V.C., Duck, A., Guerra, F.A., Coelho, L.S., Rao, R.V.: Chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers. Appl. Therm. Eng. 42, 119–128 (2012)

    Article  Google Scholar 

  28. Lahiri, S.K., Khalfe, N.M., Wadhwa, S.K.: Particle swarm optimization technique for heat exchanger design. Chem. Prod. Process. Model 7(1), 1934–1948 (2012)

    Google Scholar 

  29. Khalfe, N.M., Lahiri, S.K., Wadhwa, S.K.: Simulated annealing technique to design minimum cost exchanger. CI&CEQ 17(4), 409–427 (2011)

    Article  Google Scholar 

  30. Sahin, A.S., Kılıç, B., Kılıç, U.: Design and economic optimization of shell and tube heat exchangers using artificial bee Colony (ABC) algorithm. Energy Convers. Manag. 52, 3356–3362 (2010)

    Article  Google Scholar 

  31. Hadidi, A., Hadidi, M., Nazari, A.: A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Convers. Manag. 67, 66–74 (2013)

    Article  Google Scholar 

  32. Hadidi, A., Nazari, A.: Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Appl. Therm. Eng. 51, 1263–1272 (2013)

    Article  Google Scholar 

  33. Hadidi, A.: A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl. Energy 150, 196–210 (2015)

    Article  Google Scholar 

  34. Asadi, M., Song, Y., Sunden, B., Xie, G.: Economic optimization design of shell-and- tube heat exchangers by a cuckoo-search-algorithm. Appl. Therm. Eng. 73, 1032–1040 (2014)

    Article  Google Scholar 

  35. Wang, Z., Li, Y.: Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm. Energ Convers. Manag. 101, 126–135 (2015)

    Article  Google Scholar 

  36. Fesanghary, M., Damangir, E., Soleimani, I.: Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Appl. Therm. Eng. 29, 1026–1031 (2009)

    Article  Google Scholar 

  37. Turgut, O.E., Turgut, M.S., Coban, M.T.: Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm. ASEJ 5, 1215–1231 (2014)

    Google Scholar 

  38. Mohanty, D.K.: Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. Int. J. Therm. Sci. 102, 228–238 (2016)

    Article  Google Scholar 

  39. Rao, R.V., Patel, V.K.: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Appl. Math. Model. 37, 1147–1162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ayala, H.V.H., Keller, P., Morais, M.D.F., Mariani, V.C., Coelho, L.D.S., Rao, R.V.: Design of heat exchangers using a novel multi objective free search differential evolution paradigm. Appl. Therm. Eng. 94, 170–177 (2016)

    Article  Google Scholar 

  41. Babu, B.V., Munawar, S.A.: Differential evolution strategies for optimal design shell and tube heat exchangers. Chem. Eng. Sci. 62, 720–3739 (2007)

    Google Scholar 

  42. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II—non-deterministic and hybrid methods. Energy Syst. 3(3), 259–289 (2012)

    Article  Google Scholar 

  43. Mandegari, M.A., Pahlavanzadeh, H., Farzad, S.: Energy approach analysis of desiccant wheel operation. Energy Syst. 5, 551–569 (2014)

    Article  Google Scholar 

  44. Sayed, M., Gharghory, S.M., Kamal, H.A.: Euclidean distance-based multi-objective particle swarm optimization for optimal power plant set points. Energy Syst. doi:10.1007/s12667-015-0182-4

  45. Wouagfack, P.A.N., Tchinda, R.: Irreversible three-heat-source refrigerator with heat transfer law of Q\(\alpha \Delta \)(T\(^{-1}\)) and its performance optimization based on ECOP criterion. Energy Syst. 2, 359–376 (2011)

    Article  Google Scholar 

  46. Rao, R.V.: Teaching Learning Based Optimization Algorithm and its Engineering Applications. Springer, London (2016)

    Book  MATH  Google Scholar 

  47. Rao, R.V.: Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decis. Sci. Lett. 5, 1–30 (2016)

    Google Scholar 

  48. Rao, R.V.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)

    MathSciNet  Google Scholar 

  49. Chen, D., Zhao, C.: Particle swarm optimization with adaptive population size and its application. Appl. Soft. Comput. 9, 39–48 (2009)

    Article  Google Scholar 

  50. Shah, R.K., Sekulic, P.: Fundamental of Heat Exchanger Design. John Wiley & Sons Inc, Hoboken, New Jersey (2003)

    Book  Google Scholar 

  51. Taborek, J.: Industrial heat exchanger design practices. In: Boiler Evaporators, and Condenser. Wiley, New York (1991)

  52. Kakac, S., Liu, H.: Heat Exchangers Selection Rating, and Thermal Design. CRC Press, New York (2000)

    MATH  Google Scholar 

  53. Franco, A., Giannini, N.: Optimum thermal design of modular compact heat exchangers structure for heat recovery steam generators. Appl. Therm. Eng. 25, 1293–313 (2005)

    Article  Google Scholar 

  54. Kays, W.M., London, A.L.: Compact Heat Exchangers, 3rd edn. McGraw Hill, New York (1984)

    Google Scholar 

  55. Costa, L.H., Queiroz, M.: Design optimization of shell-and-tube heat exchangers. Appl. Therm. Eng. 28, 1798–1805 (2008)

    Article  Google Scholar 

  56. Manglik, R.M., Bergles, A.E.: Heat transfer and pressure drop correlations for the rectangular offset-strip-fin compact heat exchanger. Exp. Therm. Fluid Sci. 10, 171–80 (1995)

    Article  Google Scholar 

  57. Rao, R.V., Waghmare, G.G.: A new optimization algorithm for solving complex constrained design optimization problems. Eng. Optimiz. (2016). doi:10.1080/0305215X.2016.1164855

  58. Lyndon, W., Phil, H., Luigi, B., Simon, H.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–37 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Saroj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R.V., Saroj, A. Multi-objective design optimization of heat exchangers using elitist-Jaya algorithm. Energy Syst 9, 305–341 (2018). https://doi.org/10.1007/s12667-016-0221-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12667-016-0221-9

Keywords

Navigation