Advertisement

Energy Systems

, Volume 9, Issue 2, pp 305–341 | Cite as

Multi-objective design optimization of heat exchangers using elitist-Jaya algorithm

  • R. Venkata Rao
  • Ankit Saroj
Original Paper

Abstract

This paper proposes an elitist-Jaya algorithm for multi-objective design optimization of shell-and-tube and plate-fin heat exchangers. Jaya algorithm is a newly proposed algorithm and it is not having any algorithmic-specific parameters to be set except the common control parameters of number of iterations and population size. Elitist version of the Jaya algorithm is proposed in this paper to simultaneously optimize the total annual cost and effectiveness of the heat exchangers. Two heat exchanger design problems are considered for investigating the performance of the proposed algorithm. The same problems were earlier optimized by other researchers using genetic algorithm and modified teaching-learning-based optimization algorithm. The consequences of common controlling parameters e.g. number of iterations, population size and elite size, on the proposed algorithm’s performance is tested with various combinations of the same. The results of computational experiments proved the superiority of the proposed algorithm over the latest reported approaches used for the design optimization problems of heat exchangers.

Keywords

Multi-objective design optimization Shell-and-tube heat exchanger Plate-fin heat exchanger Elitist-Jaya algorithm 

References

  1. 1.
    Yang, J., Oh, S.R., Liu, W.: Optimization of shell-and -tube heat exchangers using a general design approach motivated by constructal theory. Int. J. Heat Mass Transf. 77, 114–1154 (2014)CrossRefGoogle Scholar
  2. 2.
    Yang, J., Oh, S.R., Liu, W., Jacobi, A.M.: Optimization of shell-and-tube heat exchangers conforming to TEMA standards with general design approach motivated by constructal theory. Energy Convers. Manag. 78, 468–476 (2014)CrossRefGoogle Scholar
  3. 3.
    Selbas, O., Kızılkan, M., Reppich, A.: New design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chem. Eng. Proc. 45, 268–275 (2006)CrossRefGoogle Scholar
  4. 4.
    Guo, J., Cheng, L., Xu, M.: Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm. Appl. Therm. Eng. 29, 2954–2960 (2009)CrossRefGoogle Scholar
  5. 5.
    Huang, S., Zhenjun, M., Cooper, P.: Optimizing heat exchanger networks with genetic algorithms for designing each heat exchanger and condensers. Appl. Therm. Eng. 29, 3437–3444 (2009)CrossRefGoogle Scholar
  6. 6.
    Fettaka, S., Thibault, J., Gupta, Y.: Design of shell-and-tube heat exchangers using multi objective optimization. Int. J. Heat Mass Transf. 60, 343–354 (2013)CrossRefGoogle Scholar
  7. 7.
    Ponce-Ortega, J.M., Serna-Gonzalez, M., Jimenez-Gutierrez, A.: Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Appl. Therm. Eng. 29, 203–209 (2009)CrossRefGoogle Scholar
  8. 8.
    Ozcelik, Y.: Exergetic optimization of shell-and-tube heat exchangers by genetic based algorithm. Appl. Therm. Eng. 27, 1849–1856 (2007)CrossRefGoogle Scholar
  9. 9.
    Amini, M., Bazargan, M.: Two objective optimization in shell-and-tube heat exchangers using genetic algorithm. Appl. Therm. Eng. 69, 278–285 (2014)CrossRefGoogle Scholar
  10. 10.
    Daroczy, L., Janiga, G., Thevenin, D.: Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization. Energy 65, 364–373 (2014)CrossRefGoogle Scholar
  11. 11.
    Khosravi, R., Khosravi, A., Nahavandi, S., Hajabdollah, H.: Effectiveness of evolutionary algorithms for optimization of heat exchangers. Energy Convers. Manag. 89, 281–288 (2015)CrossRefGoogle Scholar
  12. 12.
    Caputo, A.C., Pelagagge, P.M., Salini, P.: Heat exchanger design based on economic optimization. Appl. Therm. Eng. 28, 1151–1159 (2008)CrossRefGoogle Scholar
  13. 13.
    Sanaye, S., Hajabdollahi, H.: Multi-objective optimization of shell and tube heat exchangers. Appl. Therm. Eng. 30, 1937–1945 (2010)CrossRefGoogle Scholar
  14. 14.
    Sanaye, S., Hajabdollahi, H.: Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm. Appl. Energy 30, 1937–1945 (2010)CrossRefGoogle Scholar
  15. 15.
    Wong, J.Y.Q., Sharma, S., Rangaiah, G.P.: Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Appl. Therm. Eng. 93, 888–899 (2016)CrossRefGoogle Scholar
  16. 16.
    Sadeghzadeh, H., Ehyaei, M.A., Rosen, M.A.: Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms. Energy Convers. Manag. 93, 84–91 (2015)CrossRefGoogle Scholar
  17. 17.
    Mishra, M., Das, P.K., Sarangi, S.: Optimum design of crossflow plate-fin heat exchangers through genetic algorithm. Int. J. Heat Exch. 5, 379–402 (2004)Google Scholar
  18. 18.
    Bidabadi, M., Sadaghiani, A.K., Azad, A.V.: Spiral heat exchanger optimization using genetic algorithm. Sci. Iran 20, 1445–1454 (2013)Google Scholar
  19. 19.
    Jena, S., Patro, P., Behera, S.S.: Multi-objective optimization of design parameters of a shell & tube type heat exchanger using genetic algorithm. Int. J. Curr. Eng. Technol. 3, 1379–1386 (2013)Google Scholar
  20. 20.
    Huang, S., Ma, Z., Wang, F.: A multi-objective design optimization strategy for vertical ground heat exchangers. Energy Build. 87, 233–242 (2015)CrossRefGoogle Scholar
  21. 21.
    Selleri, T., Najafi, B., Rinaldi, F., Colombo, G.: Mathematical modeling and multi-objective optimization of a mini-channel heat exchanger via genetic algorithm. J. Therm. Sci. Eng. Appl. 5, art. no. 031013 (2013)Google Scholar
  22. 22.
    Hajabdollahi, H., Ahmadi, P., Dincer, I.: Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm. J. Thermophys. Heat Transf. 25, 424–431 (2011)CrossRefGoogle Scholar
  23. 23.
    Rao, R.V., Patel, V.K.: Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. Int. J. Therm. Sci. 49, 1712–1721 (2010)CrossRefGoogle Scholar
  24. 24.
    Turgut, O.E.: Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of plate fin heat exchangers. Appl. Math. Model. (2015). doi: 10.1016/j.apm.2015.05.003 (Accepted for publication)
  25. 25.
    Ravagnani, M.A.S.S., Silva, A.P., Biscaiac, E.C., Caballero, J.A.: Optimal design of shell-and tube heat exchangers using particle swarm optimization. Ind. Eng. Chem. Res. 48(6), 2927–2935 (2009)CrossRefGoogle Scholar
  26. 26.
    Patel, V.K., Rao, R.V.: Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Appl. Therm. Eng. 30, 1417–1425 (2010)CrossRefGoogle Scholar
  27. 27.
    Mariani, V.C., Duck, A., Guerra, F.A., Coelho, L.S., Rao, R.V.: Chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers. Appl. Therm. Eng. 42, 119–128 (2012)CrossRefGoogle Scholar
  28. 28.
    Lahiri, S.K., Khalfe, N.M., Wadhwa, S.K.: Particle swarm optimization technique for heat exchanger design. Chem. Prod. Process. Model 7(1), 1934–1948 (2012)Google Scholar
  29. 29.
    Khalfe, N.M., Lahiri, S.K., Wadhwa, S.K.: Simulated annealing technique to design minimum cost exchanger. CI&CEQ 17(4), 409–427 (2011)CrossRefGoogle Scholar
  30. 30.
    Sahin, A.S., Kılıç, B., Kılıç, U.: Design and economic optimization of shell and tube heat exchangers using artificial bee Colony (ABC) algorithm. Energy Convers. Manag. 52, 3356–3362 (2010)CrossRefGoogle Scholar
  31. 31.
    Hadidi, A., Hadidi, M., Nazari, A.: A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Convers. Manag. 67, 66–74 (2013)CrossRefGoogle Scholar
  32. 32.
    Hadidi, A., Nazari, A.: Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Appl. Therm. Eng. 51, 1263–1272 (2013)CrossRefGoogle Scholar
  33. 33.
    Hadidi, A.: A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl. Energy 150, 196–210 (2015)CrossRefGoogle Scholar
  34. 34.
    Asadi, M., Song, Y., Sunden, B., Xie, G.: Economic optimization design of shell-and- tube heat exchangers by a cuckoo-search-algorithm. Appl. Therm. Eng. 73, 1032–1040 (2014)CrossRefGoogle Scholar
  35. 35.
    Wang, Z., Li, Y.: Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm. Energ Convers. Manag. 101, 126–135 (2015)CrossRefGoogle Scholar
  36. 36.
    Fesanghary, M., Damangir, E., Soleimani, I.: Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Appl. Therm. Eng. 29, 1026–1031 (2009)CrossRefGoogle Scholar
  37. 37.
    Turgut, O.E., Turgut, M.S., Coban, M.T.: Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm. ASEJ 5, 1215–1231 (2014)Google Scholar
  38. 38.
    Mohanty, D.K.: Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. Int. J. Therm. Sci. 102, 228–238 (2016)CrossRefGoogle Scholar
  39. 39.
    Rao, R.V., Patel, V.K.: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Appl. Math. Model. 37, 1147–1162 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ayala, H.V.H., Keller, P., Morais, M.D.F., Mariani, V.C., Coelho, L.D.S., Rao, R.V.: Design of heat exchangers using a novel multi objective free search differential evolution paradigm. Appl. Therm. Eng. 94, 170–177 (2016)CrossRefGoogle Scholar
  41. 41.
    Babu, B.V., Munawar, S.A.: Differential evolution strategies for optimal design shell and tube heat exchangers. Chem. Eng. Sci. 62, 720–3739 (2007)Google Scholar
  42. 42.
    Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II—non-deterministic and hybrid methods. Energy Syst. 3(3), 259–289 (2012)CrossRefGoogle Scholar
  43. 43.
    Mandegari, M.A., Pahlavanzadeh, H., Farzad, S.: Energy approach analysis of desiccant wheel operation. Energy Syst. 5, 551–569 (2014)CrossRefGoogle Scholar
  44. 44.
    Sayed, M., Gharghory, S.M., Kamal, H.A.: Euclidean distance-based multi-objective particle swarm optimization for optimal power plant set points. Energy Syst. doi: 10.1007/s12667-015-0182-4
  45. 45.
    Wouagfack, P.A.N., Tchinda, R.: Irreversible three-heat-source refrigerator with heat transfer law of Q\(\alpha \Delta \)(T\(^{-1}\)) and its performance optimization based on ECOP criterion. Energy Syst. 2, 359–376 (2011)CrossRefGoogle Scholar
  46. 46.
    Rao, R.V.: Teaching Learning Based Optimization Algorithm and its Engineering Applications. Springer, London (2016)CrossRefzbMATHGoogle Scholar
  47. 47.
    Rao, R.V.: Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decis. Sci. Lett. 5, 1–30 (2016)Google Scholar
  48. 48.
    Rao, R.V.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)MathSciNetGoogle Scholar
  49. 49.
    Chen, D., Zhao, C.: Particle swarm optimization with adaptive population size and its application. Appl. Soft. Comput. 9, 39–48 (2009)CrossRefGoogle Scholar
  50. 50.
    Shah, R.K., Sekulic, P.: Fundamental of Heat Exchanger Design. John Wiley & Sons Inc, Hoboken, New Jersey (2003)CrossRefGoogle Scholar
  51. 51.
    Taborek, J.: Industrial heat exchanger design practices. In: Boiler Evaporators, and Condenser. Wiley, New York (1991)Google Scholar
  52. 52.
    Kakac, S., Liu, H.: Heat Exchangers Selection Rating, and Thermal Design. CRC Press, New York (2000)zbMATHGoogle Scholar
  53. 53.
    Franco, A., Giannini, N.: Optimum thermal design of modular compact heat exchangers structure for heat recovery steam generators. Appl. Therm. Eng. 25, 1293–313 (2005)CrossRefGoogle Scholar
  54. 54.
    Kays, W.M., London, A.L.: Compact Heat Exchangers, 3rd edn. McGraw Hill, New York (1984)Google Scholar
  55. 55.
    Costa, L.H., Queiroz, M.: Design optimization of shell-and-tube heat exchangers. Appl. Therm. Eng. 28, 1798–1805 (2008)CrossRefGoogle Scholar
  56. 56.
    Manglik, R.M., Bergles, A.E.: Heat transfer and pressure drop correlations for the rectangular offset-strip-fin compact heat exchanger. Exp. Therm. Fluid Sci. 10, 171–80 (1995)CrossRefGoogle Scholar
  57. 57.
    Rao, R.V., Waghmare, G.G.: A new optimization algorithm for solving complex constrained design optimization problems. Eng. Optimiz. (2016). doi: 10.1080/0305215X.2016.1164855
  58. 58.
    Lyndon, W., Phil, H., Luigi, B., Simon, H.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–37 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentSaradar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations