Influence of Aging Temperature on Functional Fatigue Behavior of a Ti50Ni45Cu5 Shape Memory Alloy

Abstract

Smart actuators, using materials with a memory, are an attractive alternative to conventional actuators due to their unique properties, such as high energy density, low power-to-weight ratio, simplicity of design, and miniaturization of size. However, the continuous cyclic operation of such devices, within their transformation temperature range, leads to the degradation of their functional properties. In this paper, the degradation of functional properties, such as recovery strain, permanent strain, and critical transition temperatures, of an Ni45Ti50Cu5 (at.%) shape memory alloy, aged at four different temperatures, ranging from 450 to 600 °C, was experimentally investigated under constant stress. The results reveal that all alloys underwent a single-step transition from B2 → B19’ at all aging temperatures. The aging temperature has a significant impact on recovery strain and permanent strain. The permanent strain accumulation after every cycle is minimized as the temperature of aging is raised to 550 °C due to the strengthening of the matrix by precipitate particles. Above this temperature, it starts to increase due to the coarsening of the precipitate particles. Aging treatment also helps to achieve faster cyclic stability during thermomechanical cycling.

This is a preview of subscription content, access via your institution.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13

References

  1. 1.

    Van Humbeeck J, Adv. Eng. Mater3(11) (2001) 837.

  2. 2.

    Mohd Jani J, Leary M, Subic A, and Gibson M A, Mater. Des. 56 (2014) 1078. https://doi.org/10.1016/j.matdes.2013.11.084.

    CAS  Article  Google Scholar 

  3. 3.

    Menna C, Auricchio F, and Asprone D, Applications of Shape Memory Alloys in Structural Engineering, Elsevier Ltd, New York (2015). https://doi.org/10.1016/B978-0-08-099920-3.00013-9.

    Google Scholar 

  4. 4.

    Otsuka K, and Wayman C M, Shape Memory Materials, Cambridge University Press, Cambridge (1999).

    Google Scholar 

  5. 5.

    Otsuka K, and Ren X, Prog. Mater. Sci. 50 (2005) 511. https://doi.org/10.1016/j.pmatsci.2004.10.001.

    CAS  Article  Google Scholar 

  6. 6.

    Lexcellent C, Shape-memory Alloys Handbook, Wiley, New York (2013). https://doi.org/10.1002/9781118577776.

    Google Scholar 

  7. 7.

    Calhoun C, Wheeler R, Baxevanis T, and Lagoudas D C, Scr. Mater. 95 (2015) 58. https://doi.org/10.1016/j.scriptamat.2014.10.005.

    CAS  Article  Google Scholar 

  8. 8.

    Eggeler G, Hornbogen E, Yawny A, Heckmann A, and Wagner M, Mater. Sci. Eng. A 378 (2004) 24. https://doi.org/10.1016/j.msea.2003.10.327.

    CAS  Article  Google Scholar 

  9. 9.

    Lagoudas D C, Miller D A, Rong L, and Kumar P K, Smart Mater. Struct. 18 (2009) 85021.

    Article  Google Scholar 

  10. 10.

    Morgan N B, and Friend C M, Le J. Phys. IV. 11 (2001) Pr8. https://doi.org/10.1051/jp4:2001855.

    Article  Google Scholar 

  11. 11.

    Zarnetta R, Takahashi R, Young M L, Savan A, Furuya Y, Thienhaus S, Maaß B, Rahim M, Frenzel J, Brunken H, others, Chu Y S, Srivastava V, James R D, Takeuchi I, Eggeler G, and Ludwig A, Adv. Funct. Mater. 20 (2010) 1917. https://doi.org/10.1002/adfm.200902336.

    CAS  Article  Google Scholar 

  12. 12.

    Tong Y, Gu H, James H, Qi W, Shuitcev A V, and Li L, J. Alloys Compd. 782 (2019) 343. https://doi.org/10.1016/j.jallcom.2018.12.219.

    CAS  Article  Google Scholar 

  13. 13.

    Cui J, Chu Y S, Famodu O, Furuya Y, Hattrick-Simpers J, James R D, Ludwig A, Thienhaus S, Wuttig M, Zhang Z, and Takeuchi I, Nat. Mater. 5 (2006) 286. https://doi.org/10.1038/nmat1593.

    CAS  Article  Google Scholar 

  14. 14.

    Gu H, Bumke L, Chluba C, Quandt E, and James R D, Mater. Today. 21 (2018) 265. https://doi.org/10.1016/j.mattod.2017.10.002.

    CAS  Article  Google Scholar 

  15. 15.

    Chen X, Srivastava V, Dabade V, and James R D, J. Mech. Phys. Solids 61 (2013) 2566. https://doi.org/10.1016/j.jmps.2013.08.004.

    CAS  Article  Google Scholar 

  16. 16.

    Jiang S, Zhang Y, Zhao Y, Liu S, Li H U, and Zhao C, Trans. Nonferrous Met. Soc. China 25 (2015) 4063. https://doi.org/10.1016/S1003-6326(15)64056-0.

    CAS  Article  Google Scholar 

  17. 17.

    Jiang S Y, Zhao Y N, Zhang Y Q, Hu L, and Liang Y L, Trans. Nonferrous Met. Soc. China (English Ed.) 23 (2013) 3658. https://doi.org/10.1016/S1003-6326(13)62914-3.

    CAS  Article  Google Scholar 

  18. 18.

    Radi A, Khalil-Allafi J, Etminanfar M R, Pourbabak S, Schryvers D, and Amin-Ahmadi B, Mater. Des. 142 (2018) 93. https://doi.org/10.1016/j.matdes.2018.01.024.

    CAS  Article  Google Scholar 

  19. 19.

    Qin Q, Peng H, Fan Q, Zhang L, and Wen Y, J. Alloys Compd. 739 (2018) 873. https://doi.org/10.1016/j.jallcom.2017.12.128.

    CAS  Article  Google Scholar 

  20. 20.

    Zheng Y, Jiang F, Li L, Yang H, and Liu Y, Acta Mater. 56 (2008) 736. https://doi.org/10.1016/j.actamat.2007.10.020.

    CAS  Article  Google Scholar 

  21. 21.

    Chang S H, Lin K H, and Wu S K, Materials (Basel). (2017). https://doi.org/10.3390/ma10070704.

    Article  Google Scholar 

  22. 22.

    Huang W, Mater. Des. 23 (2002) 11.

    CAS  Article  Google Scholar 

  23. 23.

    Nam T H, Saburi T, Nakata Y, and Shimizu K, Mater. Trans. JIM. 31 (1990) 1050.

    CAS  Article  Google Scholar 

  24. 24.

    Bricknell R H, Melton K N, and Mercier O, Metall. Trans. A. 10 (1979) 693. https://doi.org/10.1007/BF02658390.

    Article  Google Scholar 

  25. 25.

    Nam T H, Saburi T, and Shimizu K K K, Mater. Trans. JIM. 31 (1990) 959. https://doi.org/10.2320/matertrans1989.31.959.

    Article  Google Scholar 

  26. 26.

    Nespoli A, and Besseghini S, J. Therm. Anal. Calorim. 103 (2011) 821. https://doi.org/10.1007/s10973-010-1042-z.

    CAS  Article  Google Scholar 

  27. 27.

    Van Humbeeck J, Le J. Phys. IV. 01 (1991) C4-189. https://doi.org/10.1051/jp4:1991429.

    Article  Google Scholar 

  28. 28.

    Padula S, Qiu S, Gaydosh D, Noebe R, Bigelow G, Garg A, and Vaidyanathan R, Metall. Mater. Trans. A 43 (2012) 4610. https://doi.org/10.1007/s11661-012-1267-5.

    CAS  Article  Google Scholar 

  29. 29.

    Saikrishna C N, Ramaiah K V, Prabhu S A, and Bhaumik S K, Bull. Mater. Sci. 32 (2009) 343. https://doi.org/10.1007/s12034-009-0049-1.

    CAS  Article  Google Scholar 

  30. 30.

    Akin E, Effect of Aging Heat Treatments on Ni52Ti48 Shape Memory Alloy, Texas A & M University, College Station (2011).

    Google Scholar 

  31. 31.

    Bhaumik S K, Saikrishna C N, Ramaiah K V, and Venkataswamy M A, in: Key Engineering Materials (2008), pp 301–316. https://doi.org/10.4028/www.scientific.net/KEM.378-379.301.

  32. 32.

    Omrani E, and Shokuhfar A, Int. J. Metall. Met. Phys. 4 (2019) 034.

    Google Scholar 

  33. 33.

    Phillips F R, Wheeler R W, Geltmacher A B, and Lagoudas D C, Int. J. Fatigue 124 (2019) 315. https://doi.org/10.1016/j.ijfatigue.2018.12.019.

    Article  Google Scholar 

  34. 34.

    Basavarajappa N S S, Arun K V, and Yadav S M, J. Miner. Mater. Charact. Eng. 09 (2010) 811. https://doi.org/10.4236/jmmce.2010.99058.

    Article  Google Scholar 

  35. 35.

    Soto-Parra D E, Flores-Zúñiga H, López Cuéllar E, Ochoa-Gamboa R A, and Ríos-Jara D, Mater. Res. 17 (2014) 1023. https://doi.org/10.1590/1516-1439.265814.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Science and Engineering Research Board, Department of Science and Technology, India, under the grant of CRG/2019/002267.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Swaminathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, G., Sampath, V. & Adarsh, S.H. Influence of Aging Temperature on Functional Fatigue Behavior of a Ti50Ni45Cu5 Shape Memory Alloy. Trans Indian Inst Met (2021). https://doi.org/10.1007/s12666-021-02209-6

Download citation

Keywords

  • NiTiCu SMA
  • Aging
  • Thermomechanical cycling
  • Permanent strain