Characterization and Optimization of Slurry Erosion Behavior of SS 316 at Room Temperature

Abstract

Erosion is the most prominent issue in several engineering applications such as hydropower plants, steam/jet turbines, aircraft engines and chemical processing equipment. In the present study, slurry jet erosion tests were performed on the SS-316 with variation in impingement angle (30°, 90°), velocity (14.7, 30.6 m/s) and slurry concentration (0.5, 2.28%). SiO2 particles of size below 300 microns were used as the erodent. For this objective, design of experiments (DOE) approach utilizing Taguchi’s orthogonal arrays was selected to test the specimen on a slurry jet-type erosion test rig. A precision balance having least count of 0.1 mg was used to determine the mass loss of target material during the experiment. Analysis of variance (ANOVA) was applied to the measured erosion rate and surface roughness. Among all three control parameters, the impingement angle was found to be most significant parameter followed by impact velocity and solid particle concentration for both erosion rate and surface roughness. The scanning electron microscope (SEM) was used to analyze the worn-out surfaces. The multi-response optimizer indicating the optimum input parameter settings (angle: 90°, velocity: 14.7 m/s, concentration: 0.5%) will minimize erosion rate as well as surface roughness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Sahoo R, Jha B B, Sahoo T K, and Mantry S, Tribol Trans 58 (2015) 1105

    CAS  Article  Google Scholar 

  2. 2.

    Hawthorne H M, Arsenault B, Immarigeon J P, Legoux J G, and Parameswaran V R, Wear 225 (1999) 825.

    Article  Google Scholar 

  3. 3.

    Arora H S, Grewal H S, Singh H, and Mukherjee S, Wear 307 (2013) 28.

    CAS  Article  Google Scholar 

  4. 4.

    Patel M, Patel D, Sekar S, Tailor P B, and Ramana P V, Procedia Tech 23 (2016) 288.

  5. 5.

    Mann B S, Wear 237 (2000) 140.

    CAS  Article  Google Scholar 

  6. 6.

    Goyal D K, Singh H, Kumar H, and Sahni V, Wear 289 (2012) 46.

    Article  Google Scholar 

  7. 7.

    Singh J, Kumar S, and Mohapatra S K, Mater Today Proc 5 (2018) 23789.

    CAS  Article  Google Scholar 

  8. 8.

    Grewal H S, Agrawal A, and Singh H, Tribol Lett 51 (2013) 1.

    Article  Google Scholar 

  9. 9.

    Ji X, Han X, Zhou M, and Liu J, Int J Mater Res 105 (2014) 487.

    CAS  Article  Google Scholar 

  10. 10.

    Okonkwo P C, and Mohamed A M, Adv Mater Lett 6 (2015) 653.

    Article  Google Scholar 

  11. 11.

    Okonkwo P C, Shakoor R A, Ahmed E, and Mohamed A M, EFA 60 (2016) 86.

    CAS  Google Scholar 

  12. 12.

    Bhandari S, Singh H, Kumar H, and Rastogi V, J Therm Spray Technol 21 (2012) 1054.

    CAS  Article  Google Scholar 

  13. 13.

    Wood R J, Walker J C, Harvey T J, Wang S, and Rajahram S S, Wear 306 (2013) 254.

    CAS  Article  Google Scholar 

  14. 14.

    Mishra S C, Praharaj S, and Satapathy A, J Manuf Eng 4 (2009) 241.

    Google Scholar 

  15. 15.

    Fujisawa N, Takano S, Fujisawa K, and Yamagata T, Wear 398–399 (2018) 158.

    Article  Google Scholar 

  16. 16.

    Sahu S P, Satapathy A, Patnaik A, Sreekumar K P, and Ananthapadmanabhan P V, Mater Des 31 (2010) 1165.

    CAS  Article  Google Scholar 

  17. 17.

    Jha A K, Mantry S, Satapathy A, and Patnaik A, J Compos Mater 44 (2010) 1623.

    CAS  Article  Google Scholar 

  18. 18.

    Patnaik A, Satapathy A, Mahapatra S S, and Dash R R, J Polym Res 15 (2008) 147.

    CAS  Article  Google Scholar 

  19. 19.

    Patnaik A, Satapathy A, Mahapatra S S, and Dash R R, J Reinf Plast 27 (2008) 1093.

    CAS  Article  Google Scholar 

  20. 20.

    Gupta G, and Satapathy A, Adv Tribol (2014) 1. https://doi.org/10.1155/2014/763601.

  21. 21.

    Grewal H S, Bhandari S, and Singh H, Metall Mater Trans A 43 (2012) 3387.

    CAS  Article  Google Scholar 

  22. 22.

    Manisekaran T, Kamaraj M, Sharrif S M, and Joshi S V, J Mater Eng Perform 16 (2007) 567.

    CAS  Article  Google Scholar 

  23. 23.

    Okonkwo P C, Shakoor R A, Zagho M M, and Mohamed A M, Metals 6 (2016) 232.

    Article  Google Scholar 

  24. 24.

    Singh H, Goyal K, and Goyal D K, Trans Indian Inst Met 70 (2017) 1585.

    CAS  Article  Google Scholar 

  25. 25.

    Bellman R, and Levy A, Wear 70 (1981) 1 (LBL-10289).

  26. 26.

    Vicenzi J, Marques C M, and Bergmann C P, Surf Coat Tech 202 (2008) 3688.

    CAS  Article  Google Scholar 

  27. 27.

    Maruda R W, Krolczyk G M, Feldshtein E, Nieslony P, Tyliszczak B, and Pusavec F, Wear 372–373 (2017) 54.

    Article  Google Scholar 

  28. 28.

    Li H, Liu Y H, Wang Y Z, Ma J M, Cai B P, Ji R J, and Zhang Y Z, Corros Mater 62 (2011) 1051.

    CAS  Article  Google Scholar 

  29. 29.

    Lopez D, Congote J P, Cano J R, Toro A, and Tschiptschin A P, Wear 259 (2005) 118.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

“The authors great fully acknowledge the financial support for this research by the Science and Engineering Research Board, Department of Science and Technology, Government of India under Grant No: EMR/2016/000451”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jyoti Menghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vyas, A., Menghani, J., Patel, P. et al. Characterization and Optimization of Slurry Erosion Behavior of SS 316 at Room Temperature. Trans Indian Inst Met (2021). https://doi.org/10.1007/s12666-020-02169-3

Download citation

Keywords

  • Erosion behavior
  • Surface roughness
  • Erodent
  • Taguchi