Leak Detection System for Long-Distance Onshore and Offshore Gas Pipeline Using Acoustic Emission Technology. A Review

Abstract

Many petroleum products like oil and gas are transported from one place to another through pipelines, although they can undergo leakage due to pipeline leaks and cause risks to industries, the environment, and people. In this review work, we have presented a comprehensive overview of acoustic emission technology for gas pipeline leak detection. Essential gas leak detection system requirements, principles, terminologies, and risks due to failure of the natural gas pipeline system have been discussed while proposing a surface acoustic wave sensor with a combination of the Hilbert–Huang transforms (HHTs) as the best method for real-time leak detection system in the gas pipeline network. The variation of wave energy causes propagation of elastic waves that can be detected by sensors mounted on the pipeline. Natural gas pipeline networks require a continuous real-time monitoring system to ensure that the pipelines are delivering the products from one station to another at optimum conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Seger B, DTU Library37 (2016) 101.

    Google Scholar 

  2. 2.

    Er Z, and Turna I, Acta Phys. Pol. A129 (2016) 865.

    CAS  Article  Google Scholar 

  3. 3.

    Meng L., Yuxing L, Wuchang W, and Juntao F, J Loss Prevent Proc25 (2012) 90.

    Article  Google Scholar 

  4. 4.

    Jin H, Zhang L, Liang W, and Ding Q, J Loss Prevent Proc27 (2014) 74.

    Article  Google Scholar 

  5. 5.

    Pierozzi N, Catena P, Rossin D, Bernasconi G, and Signori M, Offshore Mediterranean Conference and Exhibition, Ravenna, Italy, Offshore Mediterranean Conference (2017).

  6. 6.

    Mookonil V, Bauzon J, Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi Society of Petroleum Engineers (2016).

  7. 7.

    Hopkins P, Goodfellow G, Ellis R, Haswell J, Jackson N, and Grid N, WTIA/APIA Welded Pipeline Symposium, Sydney, Australia (2009).

    Google Scholar 

  8. 8.

    Ren L, Jiang T, Jia Z-G, Li D-S, Yuan C-l, and Li H-N, Measurement122 (2018) 57.

    Article  Google Scholar 

  9. 9.

    Oh S W, Yoon D-B, Kim G J, Bae J-H, and Kim H S, Nucl Eng Des327 (2018) 198.

    CAS  Article  Google Scholar 

  10. 10.

    Holford K M, Eaton M J, Hensman J J, Pullin R, Evans S L, Dervilis N, and Worden K, Prog Aerosp Sci90 (2017) 1.

    Article  Google Scholar 

  11. 11.

    Mabily D, and Lehning V, Offshore Technology Conference, Offshore Technology Conference (2016).

  12. 12.

    Siebenaler S, Krishnan V R, Lumens P, Gesoff G, and Salmatanis N. The Twenty-fifth International Ocean and Polar Engineering Conference, International Society of Offshore and Polar Engineers (2015).

  13. 13.

    Wong L, Rathnayaka S, Chiu W, and Kodikara J, Procedia Eng188 (2017) 293.

    Article  Google Scholar 

  14. 14.

    Inaudi D, and Glisic B, J. Pressure Vessel Technol132 (2010) 011701.

    Article  Google Scholar 

  15. 15.

    Anastasopoulos A, Kourousis D, and Bollas K, J. Acoust. Emiss27 (2009) 80.

    Google Scholar 

  16. 16.

    Vshivkov A, Iziumova A Y, Panteleev I, Ilinykh A, Wildemann V, and Plekhov O, Eng Fract Mech210 (2019) 312.

    Article  Google Scholar 

  17. 17.

    Veritas D N, Risk assessment of pipeline protection, DNV-RP-F107, Oslo, Norway, (2010).

  18. 18.

    Fiedler J, ASGMT8 (2014) 103.

    Google Scholar 

  19. 19.

    Thodi P, Paulin M, Forster L, Burke J, and Lanan G. OTC Arctic Technology Conference, Houston, Texas, USA, Offshore Technology Conference (2014).

  20. 20.

    Pakhotina J, Zhu D, Hill A, and Santos R. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, Society of Petroleum Engineers (2017).

    Google Scholar 

  21. 21.

    Kulkarni M G, Buitrago J, Arslan H, and Bardi F C, The Twenty-second International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers (2012).

  22. 22.

    Geiger, G., and D. Vogt. 10th International Pipeline Conference, American Society of Mechanical Engineers Digital Collection (2014).

  23. 23.

    Berge U M, Integrity Monitoring Methods for Producing and Plugged Wells, University of Stavanger, Norway: Norway (2017).

  24. 24.

    Zhang J, Hoffman A, Murphy K, Lewis J, and Twomey M, PSIG Annual Meeting, Pipeline Simulation Interest Group (2013).

  25. 25.

    Karkulali P, Mishra H, Ukil A, and Dauwels J. 42nd Annual Conference of the IEEE Industrial Electronics Society, IEEE (2016).

  26. 26.

    Wan J, Yu Y, Wu Y, Feng R, and Yu N, Sensors12 (2012) 189.

    Article  Google Scholar 

  27. 27.

    Dissanayake D W, Al-Sarawi S, and Abbott D, Acoustic Waves12 (2010) 181.

    Google Scholar 

  28. 28.

    Sheltami T R, Bala A, and Shakshuki E M, J Ambient Intell Humanized Comput7 (2016) 347.

    Article  Google Scholar 

  29. 29.

    Duru C, and Ani C, Sādhanā42 (2017) 1889.

    Article  Google Scholar 

  30. 30.

    Idachaba F, Wokoma E, Okuns G, Brown C, and Walker I, SPE Nigeria Annual International Conference and Exhibition, Society of Petroleum Engineers (2013).

  31. 31.

    Jreij S F, Trainor-Guitton W J, and Simmons J L, Determining the added value of surface distributed acoustic sensors in sparse geophone arrays using transfer learning with a convolutional neural network, Society of Exploration Geophysicists, (2018).

  32. 32.

    Lin W, Jiang L, and Wu H, IFAC Proc Vol46 (2013) 27.

    Article  Google Scholar 

  33. 33.

    Abdelhafidh M, Fourati M, Fourati L C, and Laabidi A, Int J Wireless Mobile Comput14 (2018) 25.

    Article  Google Scholar 

  34. 34.

    Zhu J, Ren L, Ho S-C, Jia Z, and Song G, Smart Mater Struct26 (2017) 025022.

    Article  Google Scholar 

  35. 35.

    Dibangoye J S, Buffet O, and Simonin O, Twenty-Fourth International Joint Conference on Artificial Intelligence, (2015).

  36. 36.

    Oosterkamp A, International Journal of Offshore and Polar Engineering27 (2017) 90.

    Article  Google Scholar 

  37. 37.

    Baque M, Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, Society of Petroleum Engineers (2017).

    Google Scholar 

  38. 38.

    Liang W, Zhang L, Xu Q, and Yan C, Eng Fail Anal31 (2013) 1.

    Article  Google Scholar 

  39. 39.

    Adnan N, Ghazali M, Amin M, and Hamat A, IOP Conference Series: Materials Science and Engineering, IOP Publishing, Bristol (2015).

    Google Scholar 

  40. 40.

    Cheng Y, Lee W J, and McVay D A, SPE Reserv Eval Eng8 (2005) 224.

    CAS  Article  Google Scholar 

  41. 41.

    Truchetet F, and Laligant O., Wavelet Applications in Industrial Processing II, International Society for Optics and Photonics (2004).

  42. 42.

    Sharma G K, Kumar A, Rao B P, and Jayakumar T, Mater Eval72 (2014) 2000.

    Google Scholar 

  43. 43.

    Tse N C, and Lai L, EURASIP Journal on Applied Signal Processing2007 (2007) 169.

    Google Scholar 

  44. 44.

    Huang N E, Wu M L, Qu W, Long S R, and Shen S S, Appl Stoch Model Bus19 (2003) 245.

    Article  Google Scholar 

  45. 45.

    Huang N E, Introduction to the HilbertHuang transform and its related mathematical problems, World Scientific, Singapore (2014).

    Google Scholar 

  46. 46.

    Ortega J, and Smith G H, The Seventeenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers (2007).

  47. 47.

    Fusco R, Gelpi L, Manes G, Collodi G, and Manes A, Offshore Mediterranean Conference and Exhibition, Offshore Mediterranean Conference (2013).

  48. 48.

    Muravin B, Acoustic emission science and technology (2009).

  49. 49.

    Al-Jumaili S K, Pearson M R, Holford K M, Eaton M J, and Pullin R, Mech Syst Signal Pr72 (2016) 513.

    Article  Google Scholar 

  50. 50.

    Mohd S, Holford K M, and Pullin R, Proceedings of 30th European conference on acoustic emission testing & 7th international conference on acoustic emission, Granada, (2012).

  51. 51.

    Baxter M G, Pullin R, Holford K M, and Evans S L, Mech Syst Signal Pr21 (2007) 1512.

    Article  Google Scholar 

  52. 52.

    McCrory J, Advanced Acoustic Emission (AE) monitoring techniques for aerospace structures, Cardiff University: Cardiff (2016).

    Google Scholar 

  53. 53.

    Hribšek M F, Tošić D V, and Radosavljević M R, FME trans38 (2010) 11.

    Google Scholar 

  54. 54.

    Brown G, Fasham S, Tomlinson P, and Crook R. OTC Brasil, Brasil, Offshore Technology Conference (2015).

  55. 55.

    Khalifa A E, Chatzigeorgiou D M, Youcef-Toumi K, Khulief Y A, and Ben-Mansour R, ASME 2010 international mechanical engineering congress and exposition, American Society of Mechanical Engineers Digital Collection (2010).

  56. 56.

    Sun A Y, Lu J, and Hovorka S, Water Resour Res51 (2015) 4263.

    Article  Google Scholar 

  57. 57.

    Dankers A, Jalilian E, and Westwick D, IFAC-PapersOnLine49 (2016) 229.

    Article  Google Scholar 

  58. 58.

    Reid W, Huang K-C, and Roberts-Kedes D, Blind Audio Source Separation Pipeline and Algorithm Evaluation, Society of Petroleum Engineers: Abu Dhabi.

  59. 59.

    Yi C, Lv Y, Xiao H, You G, and Dang Z, Appl Sci7 (2017) 414.

    Article  Google Scholar 

  60. 60.

    Sun J, Xiao Q, Wen J, and Yang Y, J Vibroeng17 (2015) 1326.

    Google Scholar 

  61. 61.

    Khan A A, Vrabie V, d’Urso G, and Mars J I, 19th International Conference on Optical Fibre Sensors, International Society for Optics and Photonics (2008).

  62. 62.

    Boaz L, Kaijage S, and Sinde R, Proceedings of the 2nd Pan African International Conference on Science, Computing, and Telecommunications (PACT 2014), IEEE (2014).

  63. 63.

    Sun Z, Wang P, Vuran M C, Al-Rodhaan M A, Al-Dhelaan A M, and Akyildiz I F, Ad Hoc Netw9 (2011) 218.

    Article  Google Scholar 

  64. 64.

    Usarek Z, and Warnke K, Adv Mater Sci17 (2017) 37.

    Article  Google Scholar 

  65. 65.

    Okolo C, Modelling and experimental investigation of magnetic flux leakage distribution for hairline crack detection and characterization, Cardiff University: South Wales (2018).

    Google Scholar 

  66. 66.

    Lynch A J, Rice University (2009).

  67. 67.

    Schultz K A, Failure Investigation Report: Third-party Damage to a Kinder Morgan-operated NGPL Pipeline (2018).

  68. 68.

    Board N T S, Pipeline accident report (2010).

  69. 69.

    Walsh P, Jany L, and Otárola M, Gas Explosion rocks Minnehaha Academy; two died, nine injured (2017).

  70. 70.

    Karam S W A S, Saudi gas pipeline fire kills 28 (2007).

  71. 71.

    Villegas P, and Semple K, Mexico pipeline blast kills 79 and injures dozens more (2019).

  72. 72.

    Kingalame G, and Mwarabu B, TBC: Moto Mkubwa Wazuka Buguruni Baada ya Bomba la Gesi Kupasuka (2018).

  73. 73.

    Wolfe S, CNPC gas pipeline explosion injures 24 people in southwest China: government (2018).

  74. 74.

    America V O, Nairobi Pipeline Explosion Kills at Least 61 (2011).

  75. 75.

    Keller B, On This Day: Freak Gas Explosion Near Trans-Siberian Railway Kills Hundreds (1989).

  76. 76.

    Aljazeera, Nigeria: Dozens of ‘petrol thieves’ killed in Aba pipeline blast (2018).

  77. 77.

    Antelava N, Fourteen killed in India gas pipeline blast (2014).

Download references

Acknowledgments

This review paper was funded by the National Key Research and Development Program of China (No. 2016YFC0802302) and the National Natural Science Foundation of China (No. 51874340).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xuewen Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lukonge, A.B., Cao, X. Leak Detection System for Long-Distance Onshore and Offshore Gas Pipeline Using Acoustic Emission Technology. A Review. Trans Indian Inst Met (2020). https://doi.org/10.1007/s12666-020-02002-x

Download citation

Keywords

  • Gas
  • Gas pipeline
  • Leakage
  • Leakage detection
  • Acoustic wave sensor