Preparation of Antimony-doped Stannate Chemical Conversion Coating on AZ31B Mg Alloy

Abstract

Due to the complexity and high cost, the common doping method is not suitable for the direct element doping on the surface of the Mg alloy. In this paper, antimony-doped potassium stannate powder was prepared by ATO and potassium hydroxide calcination for the first time; then, the antimony-doped stannate coating was prepared on the surface of AZ31B Mg alloy through chemical conversion. The coating was continuously dense and the corrosion potential of the coating was increased by about 214 mV. The corrosion current density was greatly decreased, and the contact resistance was as low as 54.8 Ω/cm.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Gray J E, and Luan B, J Alloys Compd336 (2002) 88.

    CAS  Article  Google Scholar 

  2. 2.

    Zhong C, Liu F, Wu Y T, and Le J J, J Alloys Compd520 (2012) 11.

    CAS  Article  Google Scholar 

  3. 3.

    Duan G Q, Yang L X, Liao S J, and Zhang C Y, Corros Sci135 (2018) 197.

    CAS  Article  Google Scholar 

  4. 4.

    Ishizaki T, Masuda Y, and Teshima K, Surf Coat Technol217 (2013) 76.

    CAS  Article  Google Scholar 

  5. 5.

    Mahidashti Z, Shahrabi T, and Ramezanzadeh B, Appl Surf Sci390 (2016) 623.

    CAS  Article  Google Scholar 

  6. 6.

    Rajabalizadeh Z, and Seifzadeh D, Surf Coat Technol304 (2016) 450.

    CAS  Article  Google Scholar 

  7. 7.

    Wang C, Zhu S L, Jiang F, and Wang F H, Corros Sci51 (2009) 2916.

    CAS  Article  Google Scholar 

  8. 8.

    Yang K H, Ger M D, Hwu W H, and Sung Y, Mater Chem Phys101 (2007) 480.

    CAS  Article  Google Scholar 

  9. 9.

    Guo X W, Wang S H, Gong J, and Guo J H, Appl Surf Sci313 (2014) 711.

    CAS  Article  Google Scholar 

  10. 10.

    Yang H Y, Guo X W, Chen X B, and Birbilis N, Corros Sci79 (2014) 41.

    Article  Google Scholar 

  11. 11.

    Ambat R, Zhou W (2004) Surf Coat Technol179: 124.

    CAS  Article  Google Scholar 

  12. 12.

    Huo H W, Ying L, and Wang F H, Corros Sci46 (2004) 1467.

    CAS  Article  Google Scholar 

  13. 13.

    Liu J J, Wang X D, Tian Z Y, and Yuan M, Appl Surf Sci356 (2015) 289.

    CAS  Article  Google Scholar 

  14. 14.

    Shao Z C, Surf Technol47 (2018) 120.

    Google Scholar 

  15. 15.

    Shi H W, Liu F C, and Han E H, Prog Org Coat66 (2009) 183.

    CAS  Article  Google Scholar 

  16. 16.

    Bestetti M, Cavallotti P L, Forno A D, and Pozzi S, Trans Imf85 (2013) 316.

    Article  Google Scholar 

  17. 17.

    Gou Y N, Zhang D F, Yi D, and Zhang C Y, Rare Metal Mater Eng46 (2017) 1103.

    Google Scholar 

  18. 18.

    Zhang W, Appl Mech Mater341-342 (2013) 187.

    Google Scholar 

  19. 19.

    Chen F, Zhou H, Yao B, and Qin Z, Surf Coat Technol201 (2007) 4905.

    CAS  Article  Google Scholar 

  20. 20.

    Dong Q, Chen C Z, Wang D G, and Ji Q M, Surf Eng22 (2006) 177.

    CAS  Article  Google Scholar 

  21. 21.

    Ma J, Yang Y S, Wang X C, and Zhang J, Key Eng Mater575-576 (2014) 418.

    Article  Google Scholar 

  22. 22.

    Tian X B, Wei C B, Yang S Q, and Fu R K Y, Surf Coat Technol198 (2005) 454.

    CAS  Article  Google Scholar 

  23. 23.

    Ikhe A B, Kale A B, Jeong J, and Reece M J, Corros Sci109 (2016) 238.

    CAS  Article  Google Scholar 

  24. 24.

    Kartsonakis I A, Balaskas A C, and Kordas G C, Int J Struct Integr4 (2013) 127.

    Article  Google Scholar 

  25. 25.

    Lan W, Sun J C, Zhou A R, and Zhang D F, Mater Sci Forum610-613 (2009) 880.

    Article  Google Scholar 

  26. 26.

    Zhang S Y, Li Q, Yang X K, and Zhang H X, Mater Corros62 (2011) 841.

    CAS  Article  Google Scholar 

  27. 27.

    Liao Y, Zhang S T, and Dryfe R, Materialwiss Werkstofftech42 (2011) 833.

    CAS  Article  Google Scholar 

  28. 28.

    Liu W, Xu D D, Duan X Y, and Zhao G S, Trans Nonferrous Metals Soc China25 (2015) 1506.

    CAS  Article  Google Scholar 

  29. 29.

    Riza M A, Ibrahim M A, Ahamefula U C, and Mat Teridi M A, Solar Energy137 (2016) 371.

    CAS  Article  Google Scholar 

  30. 30.

    Wang B H, Zhang W, Yang K B, and Liao T, Ceram Int44 (2018) 16051.

    CAS  Article  Google Scholar 

  31. 31.

    Mahesh R, Mahendiran R, Raychaudhuri A K, and Rao C N R, J Solid State Chem120 (1995) 204.

    CAS  Article  Google Scholar 

  32. 32.

    Upadhyay S, Parkash O, and Kumar D, J Alloys Compd432 (2007) 258.

    CAS  Article  Google Scholar 

  33. 33.

    Guo X Y, Liu J X, Qin H, and Liu Y, Hydrometallurgy156 (2015) 199.

    CAS  Article  Google Scholar 

  34. 34.

    Zhang S G, Wei Y D, Yin S F, and Luo S L, Appl Catal A: Gen 406 (2011) 113.

    CAS  Article  Google Scholar 

  35. 35.

    Song G, Atrens A, John D S, and Wu X, Corros Sci 39 (1997) 1981.

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0301105 and 2017YFB0702100).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xudong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Wang, X., Wan, L. et al. Preparation of Antimony-doped Stannate Chemical Conversion Coating on AZ31B Mg Alloy. Trans Indian Inst Met (2020). https://doi.org/10.1007/s12666-020-01996-8

Download citation

Keywords

  • AZ31B Mg alloy
  • Stannate
  • Antimony-doped
  • Chemical conversion coating