Effect of Different Heat Treatment Processes on Microstructure Evolution and Tensile Properties of Hot-Rolled Medium-Mn Steel

Abstract

The effects of different heat treatment processes on microstructure evolution and tensile properties of Fe-0.11C-5.23Mn-1.11Al-0.10Si medium-Mn steel were investigated. The uniaxial tensile properties of tension specimens after heat treatment were tested, and the relationship between different annealed microstructures and tensile properties was analyzed; furthermore, the optimum heat treatment parameters were explored. Besides, the water-quenched sample exhibited an extensive TRIP effect than the furnace-cooled sample. The optimum microstructure and mechanical properties can be obtained when the sample is intercritically annealed at 625 °C for 4 h and then water-quenched. At the same time, the work hardening rate of the experimental steel is expounded, which provides theoretical reserve and technical support for the practical application of this kind of steel.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Yan S, Liang T, Chen J, Li T L, Liu X H, Mater Sci Eng A746 (2019) 73.

    CAS  Article  Google Scholar 

  2. 2.

    Park G, Kim K, Uhm S, Lee C, Mater Sci Eng A752 (2019) 206.

    CAS  Article  Google Scholar 

  3. 3.

    Liu C Q, Peng Q C, Xue Z L, Deng M M, Wang S J, Yang C W, Metals8 (2018) 615.

    Article  Google Scholar 

  4. 4.

    4.Niu G, Wu H B, Zhang D, Gong N, Tang D, Mater Sci Eng A725 (2018) 187.

    CAS  Article  Google Scholar 

  5. 5.

    Shao C W, Hui W J, Zhang Y J, Zhao X L, Mater Sci Eng A726 (2018) 320.

    CAS  Article  Google Scholar 

  6. 6.

    Liu C Q, Peng Q C, Xue Z L, Wang S J, Yang C W, Materials11 (2018) 2242.

    Article  Google Scholar 

  7. 7.

    Luo L B, Li W, Liu S L, Li W, Jin X J, Mater Sci Eng A742 (2019) 69.

    CAS  Article  Google Scholar 

  8. 8.

    Alturk R, Hector L G, Enloe C M, Abu-Farha F, Brown W T, JOM70 (2018) 894.

    CAS  Article  Google Scholar 

  9. 9.

    Magalhães A S, Dos Santos C E, Ferreira A O V, Alves D S, Santos D B, Mater Sci Technol34 (2018) 1.

    Google Scholar 

  10. 10.

    Ran D, Dai Z B, Huang M X, Yang Z G, Zhang C, Chen H, Acta Mater147 (2018) 59.

    Article  Google Scholar 

  11. 11.

    He B, Huang B, He S, Qi Y, Yen H, Huang M, Mater Sci Eng A724 (2018) 11.

    CAS  Article  Google Scholar 

  12. 12.

    Zhang B G, Zhang X M, Wang G D, Liu H T, Mater Sci Eng A756 (2019) 35.

    CAS  Article  Google Scholar 

  13. 13.

    Cai Z H, Li H Y, Jing S Y, Li Z C, Ding H W, Tang Z Y, Misra R D K, Mater Charact137 (2018) 256.

    CAS  Article  Google Scholar 

  14. 14.

    Srivastava A K, Bhattacharjee D, Jha G, Gope N, Mater Sci Eng A445 (2007) 549.

    Article  Google Scholar 

  15. 15.

    Jha B K, Avtar R, Dwivedi V S, Trans Indian Inst Met49 (1996) 133.

    CAS  Google Scholar 

  16. 16.

    Wang C, Shi J, Wang C Y, Hui W J, Wang M Q, Dong H, Cao W Q, ISIJ Int 54 (2011) 651.

    Article  Google Scholar 

  17. 17.

    Luo H W, Shi J, Wang C, Cao W Q, Acta Mater59 (2011) 4002.

    CAS  Article  Google Scholar 

  18. 18.

    Luo H W, Liu J H, Dong H, Metall Mater Trans A47 (2016) 3119.

    CAS  Article  Google Scholar 

  19. 19.

    Cai Z H, Ding H, Misra R D K, Ying Z Y, Acta Mater84 (2015) 229.

    CAS  Article  Google Scholar 

  20. 20.

    Cai Z H, Ding H, Misra R D K, Kong H, Scr Mater71 (2014) 5.

    CAS  Article  Google Scholar 

  21. 21.

    Xu Y B, Zou Y, Hu Z P, Han D T, Chen S Q, Misra R D K, Mater Sci Eng A698 (2017) 126.

    CAS  Article  Google Scholar 

  22. 22.

    Li Z C, Ding H, Misra R D K, Cai Z H, Mater Sci Eng A682 (2017) 211.

    CAS  Article  Google Scholar 

  23. 23.

    Cao J L, Zhao A M, Chen Y L, Cheng J Y, Kuai Z, J Univ Sci Technol Beijing35 (2013) 740.

    CAS  Google Scholar 

  24. 24.

    Zhang L, Huang X, Wang Y H, Guo Y B, Dai G Z, Li D S, J Mater Eng Perform (2018). https://doi.org/10.1007/s11665-018-3662-6.

    Article  Google Scholar 

  25. 25.

    Hu Z P, Xu, Y B, Zou Y, Misra R D K, Han D T, Chen S Q, Hou D Y, Mater Sci Eng A720 (2018) 1.

    CAS  Article  Google Scholar 

  26. 26.

    Lee C Y, Jeong J, Han J, Lee S J, Lee S, Lee Y K, Acta Mater84 (2015) 1.

    CAS  Article  Google Scholar 

  27. 27.

    Godet S, Jacques P J, Mater Sci Eng A645 (2015) 20.

    CAS  Article  Google Scholar 

  28. 28.

    Li Z C, Ding H, Cai Z H, Mater Sci Eng A639 (2015) 559.

    CAS  Article  Google Scholar 

  29. 29.

    Li Z C, Ding H, Misra R D K, Cai Z H, Li H X, Mater Sci Eng A672 (2016) 161.

    CAS  Article  Google Scholar 

  30. 30.

    Li Z C, Misra R D K, Cai Z H, Li H X, Ding H, Mater Sci Eng A673 (2016) 63.

    CAS  Article  Google Scholar 

  31. 31.

    Li Z C, Ding H W, Misra R D K, Cai Z H, Mater Sci Eng A 679 (2017) 230.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Hengyang Valin steel Tube Co., Ltd. (HYST) and China Bao Wu Wuhan Iron and Steel Group Co., Ltd. for technical assistance and financial support.

Funding

This research received no external funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qichun Peng.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Peng, Q., Xue, Z. et al. Effect of Different Heat Treatment Processes on Microstructure Evolution and Tensile Properties of Hot-Rolled Medium-Mn Steel. Trans Indian Inst Met (2020). https://doi.org/10.1007/s12666-020-01986-w

Download citation

Keywords

  • Intercritical annealing
  • Medium-Mn steel
  • Retained austenite
  • Tensile properties