Skip to main content
Log in

Effect of Pulse Frequency on Microstructural and Corrosion Properties of Inconel 718 Gas Tungsten Arc Weldments

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A study has been carried out to understand the effect of pulse frequencies on the formation of laves phase, the microstructural and corrosion properties of Inconel 718. Bead on welds was made by using gas tungsten arc welding (GTAW) in pulsed mode at different frequencies such as 2, 4, 6, 8 and 10 Hz. Varying frequencies exhibit significant changes in weld surface ripples. Microstructural analysis revealed that the welds at 2, 4 and 6 Hz showed both columnar and equiaxed dendrite structure, while at 8 and 10 Hz, the welds predominantly had equiaxed dendrites. Scanning electron microscopy results showed a reduction in continuous laves phase with the increase in pulsing frequency. Corrosion studies confirmed that the pitting resistance was increased at a higher frequency due to the reduction in laves phase in welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mirzaei M, Jeshvaghani R A, Yazdipour A, and Zangeneh-madar K, Mater Des 51 (2013) 709.

    Article  Google Scholar 

  2. Janaki Ram G D, Venugopal Reddy A, Prasad Rao K, and Madhusudhan Reddy G, Sci Technol Weld Join 9 (2004) 390.

  3. Wei P S, J Heat Transf 133 (2011) 031005.

    Article  Google Scholar 

  4. Benea L, 5th IEEE Int Conf E-Health Bioeng 5 (2015).

  5. Lucas M J, and Jackson C E, Weld J 49 (1970) 46.

    Google Scholar 

  6. Mills W J, Weld J 63 (1984) 237s.

    Google Scholar 

  7. Lambarri J, Leunda J, García Navas V, Soriano C, and Sanz C, Opt Lasers Eng 51 (2013) 813.

  8. Radhakrishnan C, and Prasad Rao K, J Mater Sci 32 (1997) 1977.

  9. Hirata Y, Weld Int 17 (2003) 98.

    Article  Google Scholar 

  10. Long Y, Nie P, Li Z, Huang J, Li X, and Xu X, Trans Nonferrous Met Soc China 26 (2016) 431.

    Article  Google Scholar 

  11. McInerney T J, and Madigan R B, Achieving Grain Refinement through Weld Pool Oscillation, ASM International (2005).

  12. Davies G J, and Garland J G, Int Metall Rev 20 (1975) 83.

    Article  Google Scholar 

  13. Janaki Ram G D, Reddy A V, Rao K P, and Reddy G M, J Mater Sci 40 (2005) 1497.

  14. Suresh M V, Vamsi Krishna B, Venugopal P, and Prasad Rao K, Sci Technol Weld Join 9 (2004) 362.

  15. Manikandan D S, Sivakumar D, Kalvala P, and Kamaraj M, Frequency Modulation Effect on Solidification of Alloy 718 Fusion Zone, Materials Science & Technology (2013).

  16. Reddy G M, Mohandas T, and Papukutty K K, J Mater Process Technol 74 (1998) 27.

    Article  Google Scholar 

  17. Ishida T, J Mater Sci 23 (1988) 3232.

    Article  Google Scholar 

  18. Becker D W, and Adams Jr C M, Weld Res Suppl 0 (1979) 143.

  19. Kurzynowski T, Smolina I, Kobiela K, Kuźnicka B, and Chlebus E, Mater Des 132 (2017) 349.

    Article  Google Scholar 

  20. Song Y, Shi H, Wang J, Liu F, Han E-H, Ke W, Jie G, Wang J, and Huang H, Acta Metall Sin (English Lett) 30 (2017) 1201.

  21. Tusek J, Int J Hydrog Energy 25 (2000) 369.

    Article  Google Scholar 

  22. Anbarasan N, Jerome S, and Arivazhagan N, J Mater Process Technol (2018).

  23. ASTM International, ASTM Int G59-97 (2014) 1.

    Google Scholar 

  24. Chen T, Nutter J, Hawk J, and Liu X, Corros Sci 89 (2014) 146.

    Article  Google Scholar 

  25. Xiao Y H, den Ouden G, and Den Ouden G, Weld J 69 (1990) 289.

  26. Andersen K, Cook G E, Barnett R J, and Strauss A M, IEEE Trans Ind Appl 33 (1997) 464.

    Article  Google Scholar 

  27. Kotecki D J, Cheever D L, and Howden D G, Weld J 51 (1972) 368.

    Google Scholar 

  28. Valencia J J, and Quested P N, ASM Handbook, Vol. 15 Cast. 15 (2008) 468.

  29. Cieslak M J, Superalloys 718, 625 Var Deriv (1991) 71.

  30. Woo I, Nishimoto K, Tanaka K, and Shirai M, Weld Int 14 (2000) 514.

    Article  Google Scholar 

  31. Manikandan S G K, Sivakumar D, Prasad Rao K, and Kamaraj M, Mater Charact 100 (2015) 192.

  32. Vishwakarma K R, Richards N L, and Chaturvedi M C, Mater Sci Eng A 480 (2008) 517.

    Article  Google Scholar 

  33. Yang M, Qi B, Cong B, Liu F, andYang Z, Int J Adv Manuf Technol 68 (2013) 19.

    Article  Google Scholar 

  34. Prifiharni S, Anwar M S, Nikitasari A, and Mabruri E, in AIP Conf Proc (2018), p 020041.

  35. Chen T, John H, Xu J, Lu Q, Hawk J, and Liu X, Corros Sci 78 (2014) 151.

    Article  Google Scholar 

  36. Gooch T G, Weld Res (1996) 135 s.

  37. Itman Filho A, Silva R V, Cardoso W da S, and Casteletti L C, Mater Res 17 (2014) 801.

  38. Cardoso J L, Silva Nunes Cavalcante A L, Araujo Vieira R C, de Lima-Neto P, and Gomes da Silva M J, J Mater Res 31 (2016) 1755.

Download references

Acknowledgements

The authors are grateful to the National Institute of Technology, Tiruchirappalli, India, and Vellore Institute of Technology, India, for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jerome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbarasan, N., Jerome, S., Suresh, G. et al. Effect of Pulse Frequency on Microstructural and Corrosion Properties of Inconel 718 Gas Tungsten Arc Weldments. Trans Indian Inst Met 72, 1299–1311 (2019). https://doi.org/10.1007/s12666-019-01626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01626-y

Keywords

Navigation