Skip to main content
Log in

The Effect of Powder Loading and Binder System on the Mechanical, Rheological and Microstructural Properties of 4605 Powder in MIM Process

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the effect of powder loading of 4605 low-alloy steel has been investigated on the rheological and mechanical properties of the final part manufactured by metal injection molding process. For this, two binder systems consisting of different percentages of paraffin wax (PW), polypropylene (PP), carnauba wax (CW) and stearic acid (SA) have been compounded with 55, 60 and 65 vol% of the powder. The manufactured samples were then tested for tensile, hardness, density and rheological properties. The results showed that with the increase in the powder loading, the tensile strength, hardness and density increase. It was observed that the higher percentage of the backbone polymer and surfactant resulted in higher mechanical properties of the final part. The optimum was made using the feedstock consisting of 55 wt% PW, 25 wt% PP, 15 wt% CW and 5 wt% SA along with 65 vol% of powder loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. German R M, Powder Injection Molding, Metal Powder Industries Federation, Princeton, New Jersey (1990), p 521.

    Google Scholar 

  2. German R, and Hens K F, Ceram. Bull 70 (1991) 1294.

    Google Scholar 

  3. Supati R, Loh N H, and Khor K A, Tor S B, Mater Lett 46 (2006) 109.

    Article  Google Scholar 

  4. Westcot E J, Andrandall C B, and German M, Powder Metall 46 (2003) 61.

    Article  Google Scholar 

  5. Liu L, Loh N H, Tay B Y, Tor S B, Murakoshi Y, and Maeda R, Mater Charact 54 (2005) 230.

    Article  Google Scholar 

  6. Li Y, Li L, and Khalil K A, J Mater Process Technol 183 (2007) 432.

    Article  Google Scholar 

  7. Sotomayor M E, Várez A, and Levenfeld, B Powder Technol 200 (2010) 30.

    Article  Google Scholar 

  8. Sotomayor M E, Levenfeld B, and Várez A, Mater Sci Eng A 528 (2011) 3480.

    Article  Google Scholar 

  9. Kong X, Barriere T, and Gelin J C, J Mater Process Technol 212 (2012) 2173.

    Article  Google Scholar 

  10. Yang G, Li J, Song W, and Meng J, Adv Mater Res 753–755 (2013) 167.

    Google Scholar 

  11. Ibrahim R, Azmirruddin M, Jabir M, Ismail M R, Muhamad M, Awang R, Muhamad S, Park K H, Bangi B B, and Lumpur K, Am J Appl Sci 7 (2010) 811.

    Article  Google Scholar 

  12. Thavanayagam G, Pickering K L, Swan J E, and Cao P, Powder Technol 269 (2015) 227.

    Article  Google Scholar 

  13. Mutsuddy B C, and Ford R G, Ceramic Injection Molding, Chapman and Hall, United Kingdom (1995), p 368.

    Google Scholar 

  14. Liu F, and Chou K, Ceram Int 26 (2000) 159.

    Article  Google Scholar 

  15. García H, J Eur Ceram Soc 32 (2012) 4063.

    Article  Google Scholar 

  16. Aggarwal G, Park S J, and Smid I, Int J Refract Met Hard Mater 24 (2006) 253.

    Article  Google Scholar 

  17. Miura H, Honda T, and German R M, J Jpn Soc Powder Powder Metall 38 (1991) 767.

    Article  Google Scholar 

  18. Miura H, Honda T, and German R M, J Jpn Soc Powder Powder Metall 39 (1992) 254.

    Article  Google Scholar 

  19. Miura H, Urakami K, Ando S, and Honda T, J Jpn Soc Powder Powder Metall 40 (1993) 388.

    Article  Google Scholar 

  20. Baba T, and Miura H, J Jpn Soc Powder Powder Metall 44 (1997) 1014.

    Article  Google Scholar 

  21. Miura H, and Matsuda M, Mater Trans 43 (2002) 343.

    Article  Google Scholar 

  22. Lin K-H, Mater Des 32 (2011) 1273.

    Article  Google Scholar 

  23. Pogodina N V, Cerclé C, Avérous L, Thomann R, Bouquey M, and Muller R, Annu Eur Rheol Conf 47 (2008) 543.

    Google Scholar 

  24. Matsuda M, and Miura H, Met Mater Int 9 (2003) 537.

    Article  Google Scholar 

  25. Özgün Ö, Gulsoy H O, Yilmaz R, and Findik F, J Alloys Compd 576 (2013) 140.

    Article  Google Scholar 

  26. Wright M, Hughes L J, and Gressel S H, J Mater Eng Perform 3 (1994) 300.

    Article  Google Scholar 

  27. Bigg D M, and Barry R G, Annu Tech ConfANTEC Conf. Proc 1 (1998) 997.

  28. Gerling R, Aust E, Limberg W, Pfuff M, and Schimansky F P, Mater Sci Eng A 423 (2006) 262.

    Article  Google Scholar 

  29. German R M, and Bose A, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation (1997), p 413.

  30. Lal A, German R M, Acta Mater 47 (1999) 4615.

    Article  Google Scholar 

  31. Li D, Hou H, Liang L, and Lee K, Int J Adv Manuf Technol 49 (2010) 105.

    Article  Google Scholar 

  32. Fan J, Han Y, Liu T, Cheng H, Gao Y, and Tian J, Trans Nonferrous Met Soc China 23 (2003) 1709.

    Article  Google Scholar 

  33. Yi-min L, Xiang-quan L, Feng-hu L, Jian-ling W E, Trans Nonferrous Met Soc China 17 (2007) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Alaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, V., Askari, A., Alaei, M.H. et al. The Effect of Powder Loading and Binder System on the Mechanical, Rheological and Microstructural Properties of 4605 Powder in MIM Process. Trans Indian Inst Met 72, 1245–1254 (2019). https://doi.org/10.1007/s12666-019-01615-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01615-1

Keywords

Navigation