Skip to main content
Log in

The Effect of Silicon on Microstructure and Wear Resistance in Bainitic Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The microstructure, hardness and sliding wear behavior of bainitic steel containing 1.0–2.5% Si were investigated by means of the optical microscope, the scanning electron microscope, the X-ray diffraction, energy-dispersive spectroscopy, Rockwell hardness tester, microhardness tester and M-200 wear tester. The results show that the as-cast structure is mainly composed of acicular lower bainite and retained austenite. As the silicon content increases, the bainitic lath is refined, the retained austenite content is reduced, and the hardness tends to increase. After normalizing at 900 °C, the microstructure of the steel is mainly acicular lower bainite and film-like retained austenite. With the increase in Si content, the bainite needle is more refined, the retained austenite content is reduced, and the hardness is increased by about 20%. In as-cast and normalizing condition, as the silicon content increases, the wear loss of cast steel is reduced, and the wear resistance is improved. The wear loss of normalizing steel is obviously smaller than that of as-cast steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Caballelo F G, and Bhadeshia H K D H, Mater Sci Technol 17 (2001) 512.

    Article  Google Scholar 

  2. Sun D Q, Wu C J, and Xie J X, Mater Mech Eng 27 (2003) 4.

    Google Scholar 

  3. Asako S, Kawabata T, Aihara S, Kimura S, and Kagehira K, Procedia Struct Integr 2 (2016) 3668.

    Article  Google Scholar 

  4. Mandal D, Ghosh M, Pal J, De P K, Chowdhury G S, Das S K, Das G, and Ghosh S, J Mater Sci 44 (2009) 1069.

    Article  Google Scholar 

  5. Chang L C, Wear 258 (2005) 730.

    Article  Google Scholar 

  6. Gui Z, Tan Y L, and Bai B Z, Heat Treat Met 31 (2006) 4.

    Google Scholar 

  7. Huang W G, Fang H S, and Zheng Y K, Trans Mater Heat Treat 18 (1997) 8.

    Google Scholar 

  8. Luo K S, and Bai B Z, Mater Des 31 (2010) 2510.

    Article  Google Scholar 

  9. Kannan R, Wang Y, and Li L, J Mater Sci 53 (2018) 12583.

    Article  Google Scholar 

  10. Soliman M, and Palkowski H, Arch Civil Mech Eng 16 (2016) 403.

    Article  Google Scholar 

  11. Singh K, and Singh A, Wear 410 (2018) 63.

    Article  Google Scholar 

  12. Sharma S, Sangal S, and Mondal K, Metall Mater Trans A 42 (2011) 3921.

    Article  Google Scholar 

  13. Chen Y T, Bai B Z, and Fang H S, J Iron Steel Res 13 (2001) 40.

    Google Scholar 

  14. Liu D Y, Bai B Z, Fang H S, Yang Z G, Zhang C, and Yan W Y, J Iron Steel Res Int 9 (2002) 46.

    Google Scholar 

  15. Jacques P, Girault E, Catlin T, Geerlofs N, Kop T, Zwaag S V D, and Delannay F, Mater Sci Eng A 273 (1999) 475.

    Article  Google Scholar 

  16. Wang H, and Chen Y, Procedia Eng 207 (2017) 1839.

    Article  Google Scholar 

  17. Huang J F, Fang H S, Xu P G, and Zheng Y K, Heat Treat Met (2000) 2.

  18. Putatunda S K, Arjun V S, Ronald T, and Gavin L, Mater Sci Eng A 513514 (2009) 329.

    Article  Google Scholar 

  19. Putatunda S K, Mater Des 24 (2003) 435.

    Article  Google Scholar 

  20. Tommy A, and Caroline F, J Iron Steel Res (Int) 15 (2008) 1.

    Google Scholar 

  21. Fang H S, Feng C, Zheng Y K, Yang Z G, and Bai B Z, Heat Treat 23 (2008) 2.

    Google Scholar 

  22. Hasan S M, Chakrabarti D, and Singh S B, Wear 408409 (2018) 151.

    Article  Google Scholar 

  23. Zhang H, Wu Y X, Li Q J, and Hong X, Wear 406407 (2018) 156.

    Article  Google Scholar 

  24. Arthur S N, Maria J S, Jilt S, and Helio G, Acta Mater 142 (2018) 142.

    Article  Google Scholar 

  25. Lucia M R, Fady A, Stefan Z, Miguel B A, Tsai S P, Yang J R, Dierk R, and Carlos G M, J Alloys Compd 752 (2018) 505.

    Article  Google Scholar 

  26. Acharya P, Kumar A, and Bhat R, MATEC Web Conf 144 (2018) 02013.

    Article  Google Scholar 

  27. Liu B, Lu X, Li W, and Jin X, Wear 398399 (2018) 22.

    Article  Google Scholar 

  28. van Bohemen S M C, Mater Sci Eng A 731 (2018) 119.

    Article  Google Scholar 

  29. Zhou Y X, Song X T, Liang J W, Shen Y F, and Misra R D K, Mater Sci Eng A 718 (2018) 267.

    Article  Google Scholar 

  30. Xu J P, Yao S J, Yan Y W, Liu S F, Fan X M, and Fang M L, China Foundry Mach Technol (2005) 20.

  31. Takayama N, Miyamoto G, and Furuhara T, Acta Mater 145 (2018) 154.

    Article  Google Scholar 

  32. Tao S F, Wang F M, Yu Q M, Sun L F, and Chai G Q, Trans Mater Heat Treat 34 (2013) 42.

    Google Scholar 

  33. Liu S Z, Yang L, Zhang W, and Zhu D G, Acta Metall Sin 28 (1992) 1.

    Google Scholar 

  34. Li F Z, Heat Treat Met (1998) 3.

  35. Zhang J S, Xu C X, and Han X P, Mater Sci Technol 7 (1999) 93.

    Google Scholar 

  36. Peng Y Z, and He G W, Heat Treat 18 (2003) 13.

    Google Scholar 

  37. Chen C Y, J Alloys Compd 762 (2018) 340.

    Article  Google Scholar 

  38. Yang J L, Jiang Y K, Gu L F, Guo Z H, and Chen H Y, Acta Metall Sin 54 (2018) 21.

    Google Scholar 

  39. Xu F Y, Wang Y W, Bai B Z, and Fang H S, J Iron Steel Res Int 17 (2010) 46.

    Article  Google Scholar 

  40. Trzaska J, and Dobrzański L A, Mater Process Technol 192193 (2007) 504.

    Article  Google Scholar 

  41. Shah M, and Bakshi S D, Wear 402403 (2018) 207.

    Article  Google Scholar 

  42. Hernandez S, Leiro A, Ripoll M R, Vuorinen E, Sundin K G, and Prakash B, Wear 360361 (2016) 21.

    Article  Google Scholar 

  43. Soliman M, and Palkowski H, Procedia Eng 81 (2014) 1306.

    Article  Google Scholar 

  44. Zhou R, Jiang Y H, Lu D H, Zhou R F, and Li Z H, Wear 250 (2001) 529.

    Article  Google Scholar 

  45. Jiang T, Liu H J, Sun J J, Guo S W, and Liu Y N, Mater Sci Eng A 666 (2016) 207.

    Article  Google Scholar 

  46. Toloui M, and Militzer M, Acta Mater 144 (2018) 786.

    Article  Google Scholar 

  47. Liu Q, Zhao X, Zhang X, and Wang H B, Mater Sci Eng A 720 (2018) 176.

    Article  Google Scholar 

  48. Richardson R C D, Wear 10 (1967) 291.

    Article  Google Scholar 

  49. Hurricks P L, Ind Lubr Tribol 23 (1971) 345.

    Article  Google Scholar 

  50. Balart M J, Davis C L, and Strangwood M, Mater Sci Eng A 328 (2002) 48.

    Article  Google Scholar 

  51. Zhou Y X, Song X T, Liang J W, Shen Y F, and Misra R D K, Mater Sci Eng A 18 (2018) 267.

    Article  Google Scholar 

  52. Shipway P H, Wood S J, and Dent A H, Wear 203 (1997) 196.

    Article  Google Scholar 

  53. Khruschov M M, Wear 28 (1974) 69.

    Article  Google Scholar 

  54. Leiro A, Kankanala A, Vuorinen E, and Prakash B, Wear 273 (2011) 2.

    Article  Google Scholar 

  55. Kannan R, Wang Y Y, Nouri M, Li D Y, and Li L J, Mater Sci Eng A 713 (2018) 1.

    Article  Google Scholar 

  56. Xing X L, Zhou Y F, Yu H, Liu L G, Zhang L J, and Yang Q X, Mater Sci Eng A 738 (2018) 367.

    Article  Google Scholar 

  57. Avishan B, Mater Sci Eng A 729 (2018) 362.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support for this work from National Natural Science Foundation of China under Grant (51775006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanguang Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Fu, H., Lin, J. et al. The Effect of Silicon on Microstructure and Wear Resistance in Bainitic Steel. Trans Indian Inst Met 72, 1231–1244 (2019). https://doi.org/10.1007/s12666-019-01611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01611-5

Keywords

Navigation