Skip to main content
Log in

Mechanical and Wear Behaviour of Hot-Pressed 304 stainless Steel Matrix Composites Containing TiB2 Particles

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present article, mechanical and wear behaviour of hot-pressed 304 stainless steel matrix composites containing 2 and 4 vol% TiB2 particles was investigated. A density of over 92% was achieved at optimum hot-pressing temperature and TiB2 particles’ content. Microhardness and yield strength of the composites were found to be improved remarkably as compared to their unreinforced counterpart. The enhancement of mechanical properties of the composites was discussed in light of their microstructural aspects and different possible strengthening mechanism models. Taylor strengthening was found to be dominant strengthening mechanism as compared to Orowan strengthening and load-bearing effect. Dry sliding wear behaviour was also investigated under load of 35 N at sliding speed 0.3 m/s. The wear resistance of the composites was found to be improved owing to uniform distribution of hard TiB2 particles. Based on our findings, it was concluded that processing parameters and amount of TiB2 have significant influence on mechanical and wear behaviour of steel matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akhtar F, Can Metall Q 53 (2014) 253.

    Article  Google Scholar 

  2. Springer H, Aparicio Fernandez R, Duarte M J, Kostka A, and Raabe D, Acta Mater 96 (2015) 47.

    Article  Google Scholar 

  3. Chen S, Zhao Z, Huang X, and Zhang L, Mater Sci Eng A 674 (2016) 335.

    Article  Google Scholar 

  4. Baron C, Springer H, and Raabe D, Mater Des 97 (2016) 357.

    Article  Google Scholar 

  5. Sulima I, Klimczyk P, and Malczewski P, Acta Metall Sin (Engl Lett) 27 (2014) 12.

    Article  Google Scholar 

  6. Moazami-Goudarzi M, and Akhlaghi F, Tribol Int 102 (2016) 28.

    Article  Google Scholar 

  7. Degnan C C, and Shipway P H, Wear 252 (2002) 832.

    Article  Google Scholar 

  8. Sulima I, Jaworska L, Wyżga P, and Perek-Nowak M, J Achiev Mater Manuf Eng 48 (2011) 52.

    Google Scholar 

  9. Sahoo S, Jha B B, Sahoo T K, Mahata T S, Sharma J, Murthy T S R C and Mandal A, Mater Sci Technol 34 (2018) 1965.

    Article  Google Scholar 

  10. Ranganath S, J Mater Sci 32(1997) 1.

    Google Scholar 

  11. Saidi A, Chrysanthou A, Wood J V, and Kellie J L, J Mater Sci 29(1994) 4993.

    Article  Google Scholar 

  12. Jiang Q C, Ma B X, Wang H Y, Wang Y, and Dong Y P, Compos Part A 37 (2006) 133.

  13. Kato O, and Kobashi M, J Mater Sci Res 1 (2012) 110.

    Google Scholar 

  14. Anal A, Bandyopadhyay T K, and Das K, J Mater Process Technol 172 (2006) 70.

    Article  Google Scholar 

  15. Bains P S, Sidhu S S, and Payal H S, Mater Manuf Process 31 (2016) 553.

    Article  Google Scholar 

  16. Wang Y, Zhang Z Q, Wang H Y, Ma B X, and Jiang Q C, Mater Sci Eng A 422(2006) 339.

    Article  Google Scholar 

  17. Sulima I, Hyjek P, and Tokarski T, Met Foundry Eng 40 (2014) 33.

    Article  Google Scholar 

  18. Tjong S C, and Lau K C, Compos Sci Technol 60 (2000) 1141.

    Article  Google Scholar 

  19. Sulima I, Arch Metall Mater 59 (2014) 1263.

    Article  Google Scholar 

  20. Sulima I, Jaworska L, and Figiel P, Arch Metall Mater 59 (2014) 205.

    Article  Google Scholar 

  21. Tjong S C, and Lau K C, Mater Lett 41 (1999) 153.

    Article  Google Scholar 

  22. Bacon D H, Edwards L, Moffatt J E, and Fitzpatrick M E, Int J Fatigue 48(2013)39.

    Article  Google Scholar 

  23. Akhtar F, and Guo S J, Mater Charact 59 (2008) 84.

    Article  Google Scholar 

  24. Nahme H, Lach E, and Tarrant A, J Mater Sci 44 (2009) 463.

    Article  Google Scholar 

  25. Pagounis E, and Lindroos V K, Mater Sci Eng A 246 (1998) 221.

    Article  Google Scholar 

  26. Khoa H X, Tuan N Q, Lee Y H, Lee B H, Viet N H, and Kim J S, J Korean Powder Met Inst 20 (2013) 221.

    Article  Google Scholar 

  27. Sahoo S, Jha B B, Sahoo T K, and Mandal A, Mater Manuf Process 33 (2017) 564.

    Article  Google Scholar 

  28. Madhusudhan T, and Senthil Kumar M, Int J Mech Eng Technol 8 (2017) 82.

    Google Scholar 

  29. Leszczyńska-Madej B, Wąsik A, and Madej M, Arch Metall Mater 62 (2017) 747.

    Article  Google Scholar 

  30. Voort G F V and Fowler R, Adv Mater Process 170 (2012) 28.

    Google Scholar 

  31. Park B G, Crosky A G, and Hellier A K, J Mater Sci 36 (2001) 2417.

    Article  Google Scholar 

  32. Yuan M, Zhang C, Tan C G, Luo Z C, Mao Y F, and Lin J G, Mater Sci Eng A 590 (2014)30.

    Article  Google Scholar 

  33. Chelliah N M, Singh H, and Surappa M K, Mater Chem Phys 194 (2017) 65.

    Article  Google Scholar 

  34. Nie K, Deng K, Wang X, and Wu K, J Mater Res 32 (2017) 2609.

    Article  Google Scholar 

  35. Xiao P, Gao Y, Yang C, Liu Z, Li Y, and Xu F, Mater Sci Eng A 710 (2018) 251.

    Article  Google Scholar 

  36. Kim C S, Sohn II, Nezafati M, Ferguson B, Schultz B F, Gohari Pradeep Z B, Rohatgi K, and Cho K, J Mater Sci 48 (2013) 4191.

    Article  Google Scholar 

  37. Frost H J, and Ashby M F, Deformation-Mechanism Maps The Plasticity and Creep of Metals and Ceramics, Pergamon, New York (1982), p 166.

    Google Scholar 

  38. Reddy A C, and Zitoun E, Int J Eng Sci Technol 3 (2011) 6090.

    Google Scholar 

  39. AlMangour B, Grzesiak D, and Yang J M, Mater Des 104 (2016) 141.

    Article  Google Scholar 

  40. Mahajan G, Karve N, Patil U, Kuppan P, and Venkatesan K, Indian J Sci Technol 8 (2015) 101.

    Article  Google Scholar 

  41. Chelliah N M, Singh H, and Surapp M K, J Mag Alloys 4 (2016) 306.

    Article  Google Scholar 

  42. Jin C, Onuoha C C, Farhat Z N, Kipouros G J, and Plucknett K P, Tribol Int 105 (2017) 250.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the director, CSIR-IMMT, Bhubaneswar, for supporting and giving permission to publish this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silani Sahoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Jha, B.B., Mahata, T. et al. Mechanical and Wear Behaviour of Hot-Pressed 304 stainless Steel Matrix Composites Containing TiB2 Particles. Trans Indian Inst Met 72, 1153–1165 (2019). https://doi.org/10.1007/s12666-019-01588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01588-1

Keywords

Navigation