Skip to main content
Log in

Microstructural Characterization of Equiatomic CrFeNbNiV Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This paper presents the results of an experimental study to investigate the structural and microchemical characteristics of an equiatomic CrFeNbNiV alloy. XRD analysis of CrFeNbNiV alloy, revealed a predominant NbCrNi type HCP Laves phase conjoined with two minor tetragonal and BCC phases. Detailed microstructural investigations using electron microscopy techniques also substantiated the presence of the above mentioned phases. The structure of Laves phase in this alloy is determined ab initio for the first time using Precession Electron Diffraction technique which was in agreement with the Rietveld analysis of XRD pattern. The formation of intermetallic Laves phase was understood based on theoretical phase stability and average d- orbital energy level \(\overline{\text{Md}}\) value calculations. The alloy in the ‘as cast’ condition exhibited a very high value of hardness (~ 1500 Hv). No change in the microstructure and hardness was observed on annealing at high temperatures even up to 1373 K (1100 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.

    Article  Google Scholar 

  2. Murty B S, Yeh J-W, and Ranganathan S, High-entropy Alloys, Butterworth-Heinemann, Oxford (2014).

    Google Scholar 

  3. Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, and Lu Z P, Prog Mater Sci, 61 (2014) 1.

    Article  Google Scholar 

  4. Tsai M-H, and Yeh J-W, Mater Res Lett 2 (2014) 107.

    Article  Google Scholar 

  5. Yeh J-W, Jom 65 (2013) 1759.

    Article  Google Scholar 

  6. Huang Y-S, Recent Patents Mater Sci 2 (2009) 154.

    Article  Google Scholar 

  7. Cantor B, Chang I, Knight P, and Vincent A, Mater Sci Eng A A 375 (2004) 213.

    Article  Google Scholar 

  8. Lin C-M, Tsai H-L, and Bor H-Y, Intermetallics 18 (2010) 1244.

    Article  Google Scholar 

  9. Ng C, Guo S, Luan J, Shi S, and Liu CT, Intermetallics 31 (2012) 165.

    Article  Google Scholar 

  10. Ke G-Y, Chen S-K, Hsu T, and Yeh J-W, Annales de chimie Lavoisier 31 (2006) 669.

    Article  Google Scholar 

  11. Guo S, Ng C, and Liu CT, J Alloy Compd 557 (2013) 77.

    Article  Google Scholar 

  12. Zhou Y, Zhang Y, Wang F, Wang Y, and Chen G, J Alloy Compd 466 (2008) 201.

    Article  Google Scholar 

  13. Zhou Y, Zhang Y, Wang Y, and Chen G, Mater Sci Eng A 454 (2007) 260.

    Article  Google Scholar 

  14. Zhou Y, Zhang Y, Wang F, and Chen G, Appl Phys Lett 92 (2008) 241917.

    Article  Google Scholar 

  15. Wu Y, Cai Y, Wang T, Si J, Zhu J, Wang Y, and Hui X, Mater Lett 130 (2014) 277.

    Article  Google Scholar 

  16. Wang Z, Guo S, and Liu C T, JOM 66 (2014) 1966.

    Article  Google Scholar 

  17. Hsu C-Y, Juan C-C, Wang W-R, Sheu T-S, Yeh J-W, and Chen S-K, Mater Sci Eng A 528 (2011) 3581.

    Article  Google Scholar 

  18. Juan C-C, Hsu C-Y, Tsai C-W, Wang W-R, Sheu T-S, Yeh J-W, and Chen S-K, Intermetallics 32 (2013) 401.

    Article  Google Scholar 

  19. Jiang H, Jiang L, Han K, Lu Y, Wang T, Cao Z, and Li T, J Mater Eng Perform 24 (2015) 4594.

    Article  Google Scholar 

  20. Tsai M-H, Yuan H, Cheng G, Xu W, Jian W W, Chuang M-H, Juan C-C, Yeh A-C, Lin S-J, and Zhu Y, Intermetallics 33 (2013) 81.

    Article  Google Scholar 

  21. Tsai C-W, Chen Y-L, Tsai M-H, Yeh J-W, Shun T-T, and Chen S-K J Alloy Compd 486 (2009) 427.

    Article  Google Scholar 

  22. Tsai M-H, Yuan H, Cheng G, Xu W, Tsai K-Y, Tsai C-W, Jian W W, Juan C-C, Shen W-J, and Chuang M-H, Intermetallics 32 (2013) 329.

    Article  Google Scholar 

  23. Xu X, Liu P, Guo S, Hirata A, Fujita T, Nieh T, Liu C, and Chen M, Acta Mater 84 (2015) 145.

    Article  Google Scholar 

  24. Furtek A, in Book of Abstracts and Proc. 7th Int. Conf. Nuclear Option in Countries with Small and Medium Electricity Grids, (eds) Cavlina N, Pevec D, Bajs T, Croatian Nuclear Society, Croatia (2008) 19.

  25. Murty K, and Charit I, J Nucl Mater 383 (2008) 189.

    Article  Google Scholar 

  26. Yvon P, and Carré F, J Nucl Mater 385 (2009) 217.

    Article  Google Scholar 

  27. Yvon P, Structural Materials for Generation IV Nuclear Reactors, Woodhead Publishing, Cambridge, 2016.

    Google Scholar 

  28. Avilov A, Kuligin K, Nicolopoulos S, Nickolskiy M, Boulahya K, Portillo J, Lepeshov G, Sobolev B, Collette JP, Martin N, and Robins AC, Ultramicroscopy 107 (2007) 431.

  29. Kolb U, Gorelik T, Kübel C, Otten M, and Hubert D, Ultramicroscopy 107 (2007) 507.

    Article  Google Scholar 

  30. Kolb U, Gorelik T, and Otten M, Ultramicroscopy 108 (2008) 763.

    Article  Google Scholar 

  31. Sheng G, and Liu CT, Prog Nat Sci Mater Int 21 (2011) 433.

    Article  Google Scholar 

  32. Yang X, and Zhang Y, Mater Chem Phys 132 (2012) 233.

    Article  Google Scholar 

  33. Zhang Y, Zhou Y J, Lin J P, Chen G L, and Liaw P K, Adv Eng Mater 10 (2008) 534.

    Article  Google Scholar 

  34. Mohanty S, Maity T, Mukhopadhyay S, Sarkar S, Gurao N, Bhowmick S, and Biswas K, Mater Sci Eng A 679 (2017) 299.

    Article  Google Scholar 

  35. Mridha S, Samal S, Khan P Y, and Biswas K, Metallurg Mater Trans A 44 (2013) 4532.

    Article  Google Scholar 

  36. Mohanty S, Gurao N, and Biswas K, Mater Sci Eng A 617 (2014) 211.

    Article  Google Scholar 

  37. Sonkusare R, Divya Janani P, Gurao N, Sarkar S, Sen S, and Pradeep K, Mater Chem Phys 210 (2017) 269.

  38. Takeuchi A, and Inoue A, Mater Trans 46 (2005) 2817.

    Article  Google Scholar 

  39. Mehrer H (ed), Landolt-Börnstein numerical data and functional relationships in science and technology, Springer-Verlag, Berlin, Heidelberg, Group III, 26 (1990) p 47.

  40. Morinaga M, Yukawa N, Adachi H, and Ezaki H, Superalloys 1984 (1984) 523.

    Google Scholar 

  41. Lu Y, Dong Y, Jiang L, Wang T, Li T, Zhang Y Entropy 17 (2015) 2355.

    Article  Google Scholar 

  42. Zhang Y, Yang X, and Liaw P, Jom 64 (2012) 830.

    Article  Google Scholar 

  43. He F, Wang Z, Cheng P, Wang Q, Li J, Dang Y, Wang J, and Liu C, J Alloys Compd 656 (2016) 284.

    Article  Google Scholar 

  44. Jiang L, Lu Y, Wu W, Cao Z, and Li T, J Mater Sci Technol 32 (2016) 245.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. G. Amarendra, Director, Metallurgy and Materials Group, and Dr. A. K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research for their sustained support and encouragement in the pursuit of this work. Mr. Saikumaran expresses his deep sense of gratitude to HBNI for funding this project. The authors also thank UGC-DAE consortium for SEM facilities, Dr. N. V. Chandrasekar and Mr. Meenakshi sundaram for their help in alloy melting, Dr. S. Kalavathy and Mr. Irshad. K. Abbas for the XRD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mythili.

Ethics declarations

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikumaran, A., Mythili, R., Saroja, S. et al. Microstructural Characterization of Equiatomic CrFeNbNiV Alloy. Trans Indian Inst Met 72, 111–121 (2019). https://doi.org/10.1007/s12666-018-1466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1466-x

Keywords

Navigation