Skip to main content

Advertisement

Log in

Nano-/Ultrafine Eutectic in CoCrFeNi(Nb/Ta) High-Entropy Alloys

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The development of single-phase high-entropy alloys (HEAs) emerges as a new paradigm shift in material research society during the last decade. A strong rise in the demand for structural and functional applications leads to the design and fabrication of super-strong eutectic HEAs through solidification processing. We report on the evolution of eutectic microstructure in CoCrFeNiNb0.5 and CoCrFeNiTa0.4 HEAs synthesized by arc melting. The evolved microstructure consists of nanolamellae of FCC γ-Ni and hexagonal β (Fe2Nb or Co2Ta type) Laves phases of 150 nm lamellae thickness. These alloys exhibit high yield strength of 2 GPa, ultimate compressive strength up to 2.2 GPa and 20% plastic strain. The strain rate jump test and transmission electron microscopic studies of deformed specimens have been performed to explore the microscopic mechanism of deformation in these high-strength advanced eutectic alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299.

    Article  CAS  Google Scholar 

  2. Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng 375 (2004) 213.

    Article  Google Scholar 

  3. Murty B S, Yeh J W, and Ranganathan S, High entropy Alloys, Butterworth-Heinemann, Oxford (2014).

    Book  Google Scholar 

  4. Hsu C Y, Yeh J W, Chen S K, and Shun T T, Metall Mater Trans A 35 (2004) 1465.

    Article  Google Scholar 

  5. Sriharitha R, Murty B S, and Kottada R S, Intermetallics 32 (2013) 119.

    Article  CAS  Google Scholar 

  6. Liu W H, He J Y, Huang H L, Wang H, Lu Z P, and Liu C T, Intermetallics 60 (2015) 1.

    Article  Google Scholar 

  7. Agarwal R, Sonkusare R, Jha S R, Gurao N P, Biswas K and Nayan N, Mater Des 157 (2018) 539.

    Article  CAS  Google Scholar 

  8. Wang Y P, Li B S, and Fu H Z, Adv Eng Mater 11 (2009) 641.

    Article  CAS  Google Scholar 

  9. Ma S G, and Zhang Y, Mater Sci Eng A 532 (2012) 480.

    Article  CAS  Google Scholar 

  10. Chen M R, Lin S J, Yeh J W, Chuang M H, Chen S K, and Huang Y S, Metall Mater Trans A 37 (2006) 1363.

    Article  Google Scholar 

  11. Zhou Y J, Zhang Y, Wang Y L, and Chen G L, Appl Phys Lett 90 (2007) 181904.

    Article  Google Scholar 

  12. Chen Y Y, Hong U T, Shih H C, Yeh J W, and Duval T, Corros Sci 47 (2005) 2679.

    Article  CAS  Google Scholar 

  13. Tong C J, Chen Y L, Yeh J W, Lin S J, Chen S K, Shun T T, Tsau C H, and Chang S Y, Metall Mater Trans A 36 (2005) 881.

    Article  Google Scholar 

  14. Biswas K, and Gurao N P, Mater Sci Eng A 657 (2016) 224.

    Article  Google Scholar 

  15. Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, and Lu Z P, Prog Mater Sci 61 (2014) 1.

    Article  Google Scholar 

  16. Huang Y S, Chen L, Lui H W, Cai M H, and Yeh J W, Mater Sci Eng A 457 (2007) 77.

    Article  Google Scholar 

  17. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, and Ruan H, Sci Rep 4 (2014) 1.

    Google Scholar 

  18. Jiang H, Zhang H, Huang T, Lu Y, Wang T, and Li T, Mater Des 109 (2016) 539.

    Article  CAS  Google Scholar 

  19. Chanda B, and Das J, Adv Eng Mater 20 (2018) 1700908.

    Article  Google Scholar 

  20. Guo S, Ng C, and Liu C T, Mater Res Lett 1 (2013) 228.

    Article  CAS  Google Scholar 

  21. Mishra A K, Samal S, and Biswas K, Trans Indian Inst Met 65 (2012) 725.

    Article  CAS  Google Scholar 

  22. Standard ASTM G129-00, Standard practice for slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking, ASTM International, Conshohocken (2013).

  23. Young R A, Introduction to Rietveld Method, Oxford University Press, Oxford, UK (1993).

    Google Scholar 

  24. Taylor G, Prog Mater Sci 36 (1992) 29.

    Article  CAS  Google Scholar 

  25. Wei Q, Cheng S, Ramesh K T, and Ma E, Mater Sci Eng A 381(2004) 71.

    Article  Google Scholar 

  26. Elmustafa A A, and Stone D S, J Mech Phys Solids 51 (2003) 357.

    Article  CAS  Google Scholar 

  27. Ganji R S, Karthik P S, Rao K B S, and Rajulapati K V, Acta Mater 125 (2017) 58.

    Article  CAS  Google Scholar 

  28. Das, J, Maity, T. and Singh, A, Trans Indian Inst Met 68 (2015) 1199.

    Article  CAS  Google Scholar 

  29. Maity, T, Singh, A, Dutta, A and Das, J, Mater Sci Eng A 666 (2016) 72.

    Article  CAS  Google Scholar 

  30. Juhasz A, Tasnandi P, Szaszvari P, and Kovacs I, J Mater Sci 21 (1986) 3287.

    Article  CAS  Google Scholar 

  31. Rogal L, Morgiel J, Świątek Z, and Czerwiński F, Mater Sci Eng A 651 (2016) 590.

    Article  CAS  Google Scholar 

  32. Senkov O N, Wilks G B, Scott J M, and Miracle D B, Intermetallics 19 (2011) 698.

    Article  CAS  Google Scholar 

  33. Wang X F, Zhang Y, Qiao Y, and Chen G L, Intermetallics 15 (2007) 357.

    Article  CAS  Google Scholar 

  34. Wang F J, Zhang Y, Chen G L, and Davies H A, J Eng Mater Technol 131 (2009) 034501.

    Article  Google Scholar 

  35. Shun T T, and Du Y C, J Alloys Compd 479 (2009) 157.

    Article  CAS  Google Scholar 

  36. Park J M, Sohn S W, Kim T E, Kim D H, Kim K B, Kim W T, Scripta Mater 57 (2007) 1153.

    Article  CAS  Google Scholar 

  37. Maity T, and Das J, AIP Advances 2 (2012) 032175.

    Article  Google Scholar 

  38. Maity T, and Das J, Intermetallics 63 (2015)51.

    Article  CAS  Google Scholar 

  39. Xing L Q, Li Y, Ramesh K T, Li J, and Hufnagel T C, Phys Rev B 64 (2001) 180201.

    Article  Google Scholar 

  40. Schroers J, and Johnson W L, Phys Rev Lett 93 (2004) 255506.

    Article  Google Scholar 

  41. Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, and Eckert J, Phys Rev Lett 94 (2005) 205501.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical support provided by M. Das, S. Maity and R. Kundu. The funding provided by SRIC (SGIRG) IIT Kharagpur and Naval Research Board (NRB/4003/PG/357), Government of India are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, B., Verma, A. & Das, J. Nano-/Ultrafine Eutectic in CoCrFeNi(Nb/Ta) High-Entropy Alloys. Trans Indian Inst Met 71, 2717–2723 (2018). https://doi.org/10.1007/s12666-018-1408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1408-7

Keywords

Navigation