Skip to main content
Log in

Preparation of Industrial Manganese Compound from a Low-Grade Spessartine Ore by Hydrometallurgical Process

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The increasing global demands for pure manganese in steel production and manganese compound as dietary additives, fertilizer, pigment, cells and fine chemicals production cannot be over-emphasized. Thus, continuous efforts in developing low cost and eco-friendly route for purifying the manganese ore to meet some defined industrial demands become paramount. Therefore, this study focused on reductive leaching and solvent extraction techniques for the purification of a Nigerian manganese ore containing admixture of spessartine (O96.00Mn24.00Al16.00Si24.00) and quartz (Si3.00O6.00). During leaching, parameters such as leachant concentration and reaction temperature on the extent of ore dissolution were examined accordingly for the establishment of extraction conditions. At optimal leaching conditions (1.5 mol/L H2SO4 + 0.2 g spent tea, 75 °C), 80.2% of the initial 10 g/L ore reacted within 120 min. The derived dissolution activation energy (Ea) of 35.5 kJ/mol supported the diffusion reaction mechanism. Thus, the leachate at optimal leaching was appropriately treated by alkaline precipitation and solvent extraction techniques using sodium hydroxide and (di-2-ethylhexyl) phosphoric acid (D2EHPA) respectively, to obtain pure manganese solution. The purified solution was further beneficiated to obtain manganese sulphate monohydrate (MnSO4.H2O, melting point = 692.4 °C: 47-304-7403) of high industrial value. The unleached residue (~ 19.8%) analyzed by XRD consisted of silicileous impurities (SiO2) which could serve as an important by-product for some defined industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Long Y F, Lv X Y, Lv Y J, Li N Y, Su J, and Wen Y X, Kem Ind 64 (2015) 593.

    Article  CAS  Google Scholar 

  2. Wensheng Z, and Cheng C Y, Hydrometallurgy 89 (2007) 137.

    Article  Google Scholar 

  3. Ye O, Zhu H, Zhang L, Liu P, Chen G, and Peng J, RSC Adv 4 (2014) 58164.

    Article  CAS  Google Scholar 

  4. Zhang Y, You Z, Li G, and Jiang T, Hydrometallurgy 133, (2013) 126.

    Article  CAS  Google Scholar 

  5. Xike T, Xiaoxia W, Chao Y, Yujun L, Zhengbang P, and Yanxin W, Hydrometallurgy 100 (2010) 157.

    Article  Google Scholar 

  6. Nicolas J B, Edward P W, and Herve W, J Int Geosci 43 (2016), 25.

    Google Scholar 

  7. Nwabufo-Ene, Trammel Open files circ 12 (2006), 10.

    Google Scholar 

  8. Belyi A V, Pustoshilov P P, Gurevich Y L, Kadochnikova G G, and Ladygina V P, Appl Biochem Microbiol 42 (2006) 289.

    Article  CAS  Google Scholar 

  9. Ekmekyapar A, Celal A, Nizamettin D, Asim K, Ahmet B, and Kadim C, Russ J Non-Ferrous Met 53 (2012) 211.

    Article  Google Scholar 

  10. Tang Q, Zhong L, Wang S, Jin-zhong L, and Liu G, Trans Nonferrous Met Soc China 24 (2014) 861.

    Article  CAS  Google Scholar 

  11. Long Y, Su Jing Y X, Haifeng S, and Wen Y, Trans Tech Publ 699 (2013) 28.

    CAS  Google Scholar 

  12. Haifeng S, Yanxuan W, Fan W, Yingyun S, and Zhangfa T, Hydrometallurgy 93 (2008) 136.

    Article  Google Scholar 

  13. Ghosh M K, Harisprasad D, and Anand S, Trans Indian Inst Met 62 (2009) 551.

    Article  Google Scholar 

  14. Zhuo C, Guocai Z, and Yuna Z, Hydrometallurgy 96 (2009) 176.

    Article  Google Scholar 

  15. Zhang H, Zhu G, Yan H, Li T, and Feng X, Metall Mater Trans 44B (2013) 878.

    Article  Google Scholar 

  16. Gupta C K, and Mukherjee T K, Hydromettalurgy in Extraction Process. CRC Press, Boca Raton (1993), vol 2.

  17. Wensheng Z, and Cheng C Y, Hydrometallurgy 89 (2007) 160.

    Article  Google Scholar 

  18. Sato T, and Nakamura T, J Min 101 (1985) 309.

    CAS  Google Scholar 

  19. Roberto P G, Javier M J, Alejandro U S, and Antonia M L, Sci Res 4 (2012) 526.

    Google Scholar 

  20. Valentina I, and Francesco V, Hydrometallurgy 129–130 (2012) 50.

    Google Scholar 

  21. Mehdilo A, Irannajad M, and Hojjati-Rad M R, Physicochem Probl Miner Process 49 (2013) 725.

    CAS  Google Scholar 

  22. Baba A A, Ibrahim L, Bale R B, Alabi A G F, Adekola F A, Ghosh M K, Sanjay K, and Sheik A, CIM J 7 (2016) 1.

    Article  Google Scholar 

  23. Baba A A, Olaoluwa D T, Alabi A G F, Ibrahim A S, and Ruth O S, Can Metall Q (2017) DOI- 1080/00084433.2017.

  24. Danuza P W, Germano D, Renata C A, and Marcelo B M, J Power Sources 159 (2006) 1510.

    Article  Google Scholar 

  25. Pagnanellia F, Furlania P, Valentinia, Veglio F, and Toro L, Hydrometallurgy 75 (2004) 157.

    Article  Google Scholar 

  26. Ali S, Iqbal Y, Ahmad K, and Afridi B, J Miner Mater Charact Eng 6 (2018) 60.

    Article  CAS  Google Scholar 

  27. Abdulkareem A Y, Reductive Leaching and Solvent Extraction of a Nigerian Spessartine Ore in Acidic Media. M.Sc. Dissertation, Depart of Ind Chem Uni of Ilorin Nigeria 2017.

  28. Nayl A A, Ismail I M, and Aly H F, Int J Miner Process 100 (2011) 116.

    Article  CAS  Google Scholar 

  29. El Hazek M, and Gabr A A, Am J Anal Chem 7 (2016) 469.

    Article  Google Scholar 

  30. Adekola A F, Baba A A, and Girigisu S, J Cent South Univ 23 (2016) 318.

    Google Scholar 

  31. Haifeng S U, Huaikun L, Wang F, Xiaoyan L, and Wen Y, Chin J Chem Eng 18 (2010) 730.

    Article  Google Scholar 

  32. Dan-dan W, Jiu-Shuai D, Shu-ming W, and Jian-jing D, Int J Miner Metall Mater 22 (2015) 242.

    Google Scholar 

  33. Baba A A, Adekola F A, and Bale R B, J Hazard Mater 171 (2009) 837.

    Article  Google Scholar 

  34. Jacox M E, J Phys Chem Ref 32 (2003) 1.

Download references

Acknowledgements

The authors are grateful to: Miranda Waldron of the Centre for Imaging & Analysis, University of Cape Town, South Africa for assisting with SEM & EDS analyses. Central Research Laboratories, University of Ilorin, Nigeria for assisting in aqueous metal analyses by AAS. Hydro & Electrometallurgy Department of the CSIR-Institute of Minerals and Materials Technology, Bhubaneswar-751013, India for their benevolence in supplying the D2EHPA extractant used in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alafara A. Baba or Aishat Y. Abdulkareem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, A.A., Abdulkareem, A.Y., Raji, M.A. et al. Preparation of Industrial Manganese Compound from a Low-Grade Spessartine Ore by Hydrometallurgical Process. Trans Indian Inst Met 71, 2453–2463 (2018). https://doi.org/10.1007/s12666-018-1376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1376-y

Keywords

Navigation