Skip to main content
Log in

Effect of Heat Treatment on Microstructure and Properties of High Boron-High Speed Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A new type of high boron-high speed steel (HB-HSS) with different boron content was selected for oil quenching at 1050 °C, and different temperature of tempering treatment was chosen. By using optical microscopy, scanning electron microscopy, X-ray diffraction, Rockwell hardness tester, red hard treatment and wear test, the effects of heat treatment on microstructure and properties of HB-HSS were investigated. The experimental results indicate that the quenching microstructure of HB-HSS consists of α-Fe, M2(B, C), M7(B, C)3 and a few of M23(C, B)6. When the tempering temperature is lower than 500 °C, the shape of carboborides will change from discontinuous sheet to continuous net, and the uniformity in microstructure is improved, and the hardness is not changed during the process. When the tempering temperature is higher than 500 °C, the continuous net of M2(B, C) is recovered. When the tempering temperature is higher than 600 °C, the microstructure of HB-HSS get thickened because of overheating, and the hardness get significantly reduced. With the increase of tempering temperature, the weight loss of the sample is decreased, and the wear resistance of the sample is increased. When tempering temperature exceeds 500 °C, the weight loss of the sample has an obvious increase and its wear resistance decreases. The wear resistance of the sample decreases after the red-hardness treatment. The wear loss is about 8.4 mg when the boron content is 2.0% and the tempering temperature is 500 °C, which is the best of test samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lu X C, Li S, and Jiang X, Wear 250–251 (2001) 1234.

    Article  Google Scholar 

  2. Chenje T W, Simbi D J, and Navara E, Min Eng 16 (2003) 1387.

    Article  CAS  Google Scholar 

  3. Bouaeshi W B, and Li D Y, Tribol Int 40 (2007) 188.

    Article  CAS  Google Scholar 

  4. Shimizu M, Shitamura O, Matsuo S, Kamata T, and Kondo Y, ISIJ Int 32 (1992) 1244.

    Article  CAS  Google Scholar 

  5. Chaus A S, Sitkevich M V, and Pokorný P, Wear 31 (2010) 419.

    Google Scholar 

  6. Garza-Montes-de-Oca N F, and Rainforth W M, Wear 267 (2009) 441.

    Article  CAS  Google Scholar 

  7. Song X, Liu H, Fu H, and Xing J, Foundry 57 (2008) 498 (in China).

    CAS  Google Scholar 

  8. Fu H, Ma S, Hou J, Lei Y, and Xing J, J Mater Eng Perform 22 (2013) 1194.

    Article  CAS  Google Scholar 

  9. Xavier R R, de Carvalho M A, Cannizza E, White T H Jr, and Sinatora A, Iron Steel Technol 1 (2004) 28.

    CAS  Google Scholar 

  10. Chaus A S, Met Sci Heat Treat 47 (2005) 53.

    Article  CAS  Google Scholar 

  11. Hou J-q, Fu H-g, Lei Y-p, and Dai J-f, Trans Mater Heat Treat 32 (2011) 100.

    CAS  Google Scholar 

  12. Liu Z-l, Li Y-x, Chen X, and Hu K, Iron Steel 42 (2007) 78.

    CAS  Google Scholar 

  13. Fu H, Qu Y, Xing J, Zhi X, Jiang Z, Li M, and Zhang Y, J Mater Eng Perform 17 (2008) 535.

    Article  CAS  Google Scholar 

  14. Fu H, Song X, Liu H, Lei Y, Cheng X, and Xing J, Rare Met Mater Eng 39 (2010) 1125.

    CAS  Google Scholar 

  15. Yang Y, Research on Diagram Calculation and Microstructure of High Boron High Speed Steel, Beijing University of Technology, Beijing (2017).

    Google Scholar 

  16. Yang Y-w, Fu H-g, Lei Y-p, Wang K-m, Zhu L-l, and Jiang L, J Mater Eng Perform 25 (2016) 409.

    Article  CAS  Google Scholar 

  17. Yang Y-w, Fu H-g, Wang K-m, Lei Y-p, Zhu L-l, and Jiang L, Trans Mater Heat Treat 36 (2016) 48.

    CAS  Google Scholar 

  18. Qi Z-F, Feng Q-Y, Wu L-Z, and Xie Z-B, Heat Treat Met 26 (2001) 8.

    CAS  Google Scholar 

  19. Gao F, Liang Y, Feng J, and Li L, Hot Work Technol 38 (2009) 122.

    Google Scholar 

  20. Weber K, Regener D, Mehner H, and Menzel M, Mater Charact 46 (2001) 399.

    Article  CAS  Google Scholar 

  21. Song X, Fu H, and Yang J, Trans Mater Heat Treat 29 (2001) 38.

    CAS  Google Scholar 

  22. Fu H, and Xing J, Manufacturing Technology of High Speed Steel Roll, Metallurgical Industry Press, Beijing (2007), p 145.

    Google Scholar 

  23. Ju J, Fu H-G, Xing Z-G, and Lei Y-P, Kovove Mater 55 (2017) 323.

    CAS  Google Scholar 

  24. Zhang J, Gao Y, Xing J, Ma S, Yi D, Liu L, and Yan J, J Mater Eng Perform 20 (2011) 1658.

    Article  CAS  Google Scholar 

  25. Kim J H, Ko K H, Noh S D, Kim G G, and Kim S J, Wear 267 (2009) 1415.

    Article  CAS  Google Scholar 

  26. Spuzic S, Subramanian C, and Strafford K N, Mater Sci Forum 189–190 (1995) 429.

    Article  Google Scholar 

  27. Bai Q, Yao Y, Bex P, and Zhang G, Tribology 23 (2003) 81.

    CAS  Google Scholar 

  28. Fu H-G, Xing J-D, Lei Y-P, and Huang L-M, J Mater Eng Perform 20 (2011) 1665.

    Article  CAS  Google Scholar 

  29. Yi D, Xing J, Ma S, Fu H, Li Y, Chen W, Yan J, Zhang J, and Zhang R, Tribol Lett 45 (2012) 427.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support for this work from National Natural Science Foundation of China under Grant (51475005), and Beijing Natural Science Foundation (2142009), and “Hundred Talents” of Shaanxi Province (The eighth batch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-guang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Hg., Liu, Xn., Yang, Yw. et al. Effect of Heat Treatment on Microstructure and Properties of High Boron-High Speed Steel. Trans Indian Inst Met 71, 2423–2432 (2018). https://doi.org/10.1007/s12666-018-1373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1373-1

Keywords

Navigation