Skip to main content
Log in

Experimental Study of Surface Hardening of AISI 420 Martensitic Stainless Steel Using High Power Diode Laser

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this paper laser surface hardening of martensitic stainless steel AISI 420 was conducted using a 1600 W semiconductor diode laser. Focal plane position, laser power and scanning speed were considered as process variables. Microhardness was measured in depth and surface of the hardened layer and metallography of samples were conducted in order to study the microstructure of the hardened zone. Macrography was also performed to measure the geometrical dimensions of hardened zone (width and depth). Microstructure evaluation was investigated through optical microscopy and field emission scanning electron microscopy. Microstructure observation of laser treated zone indicated that the higher surface hardness created the finer and more uniform martensitic phase. Results showed that by increasing the laser power and decreasing the focal plane position, depth of penetration and microhardness of hardened zone increased. By increasing the scanning speed and focal plane position, penetration depth decreased while width of hardened zone increased. Under desired conditions resulting from this research (laser power 1400 W, scanning speed 5 mm/s and focal plane position 65 mm), surface hardness of AISI 420 martensitic steel increased to 720 from 210 Vickers. The dimension of hardened layer was 1.2 mm in depth and 6.1 mm in width. Comparing the results with the furnace hardening heat treatment showed that the laser hardening process was more effective and precise than conventional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kannatey Asibu E, Jr, Principles of Laser Materials Processing, John Wiley and Sons, New Jersey (2009), p 568.

    Book  Google Scholar 

  2. Moradi M, Salimi N, Ghoreishi M, Abdollahi H, and Shamsborhan M, J Laser Appl 26 (2014) 022004.

    Article  Google Scholar 

  3. Sundqvist J, Kaplan A F H, Granström J, and Sundin K G, J Laser Appl 27 (2015) 042002.

    Article  Google Scholar 

  4. Moradi M, Ghoreishi M, Torkamany M, Sabbaghzadeh J, and Hamedi MJ, Adv Mat Res 383 (2012) 6247.

    Google Scholar 

  5. Faraji A H, Moradi M, Goodarzi M, Colucci P, and Maletta C, Opt Lasers Eng 96 (2017) 1.

    Article  Google Scholar 

  6. khorram A, Jafari A, and Moradi M, Modares Mech Eng 17 (2017) 129.

  7. Moradi M, Ghoreishi M, and Khorram A, Laser Eng 39 (2018) 379.

    Google Scholar 

  8. Moradi M, and Golchin E, Lat Am J Solids Struct 14 (2017) 464.

    Article  Google Scholar 

  9. Moradi M, Mehrabi O, Azdast T, and Benyounis H Y, Opt Laser Technol 96 (2017) 208.

    Article  Google Scholar 

  10. Li L, Opt Lasers Eng 34 (2000) 231.

    Article  Google Scholar 

  11. Puli R, and Ram G D J, Surf Coat Technol 209 (2012) 1.

    Article  Google Scholar 

  12. Mahmoudi B, Aghdam A R S, and Torkamany M J, JEST 8 (2010) 87.

    Google Scholar 

  13. Lo K H, Cheng F T, and Man H C, Surf Coat Technol 173 (2003) 96.

    Article  Google Scholar 

  14. Kim J D, Lee M H, Lee S J, and Kang W J, Trans Nonferr Metal Soc 19 (2009) 941.

    Article  Google Scholar 

  15. Soriano C, Leunda J, Lambarri J, Navas V G, and Sanz C, Appl Surf Sci 25 (2011) 7101.

    Article  Google Scholar 

  16. Badkar D S, Pandey K S, and Buvanashekaran G, T Nonferr Metal Soc 20 (2010) 1078.

    Article  Google Scholar 

  17. Li R, Jin Y, Li Z, and Qi K, J Mater Eng Perform 23 (2014) 3085.

    Article  Google Scholar 

  18. Bien A, and Szkodo M, J Mater Process Tech 217 (2015) 114.

    Article  Google Scholar 

  19. Telasang G, Majumdar J D, Padmanabham G, and Manna I, Surf Coat Technol 261 (2015) 69.

    Article  Google Scholar 

  20. Pinahin I A, Chernigovskij V A, Bracihin A A, and Yagmurov M A, J Frict Wear 36 (2015) 330.

    Article  Google Scholar 

  21. Babu P D, Buvanashekaran G, and Balasubramanian K R, T Can Soc Mech Eng 36 (2012) 241.

    Article  Google Scholar 

  22. Moradi M, Karami Moghadam M, Zarei J, and Ganji B, Modares Mech Eng 17 (2017) 311.

    Google Scholar 

  23. Bojinovic M, Mole N, and Stok B, Surf Coat Technol 273 (2015) 60.

    Article  Google Scholar 

  24. Cordovilla F, Garcia-Beltran A, Sancho P, Dominguez J, de-Lara L R, and Ocana J L, Mater Des 102 (2016) 225.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Moradi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M., Fallah, M.M. & Jamshidi Nasab, S. Experimental Study of Surface Hardening of AISI 420 Martensitic Stainless Steel Using High Power Diode Laser. Trans Indian Inst Met 71, 2043–2050 (2018). https://doi.org/10.1007/s12666-018-1338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1338-4

Keywords

Navigation