Skip to main content
Log in

Influence of Grain Boundary Complexion on Deformation Mechanism of High Temperature Bending Creep Process of Cu Bicrystal

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Despite of substantial advancement, the effect of grain boundary (GB) complexions on high temperature creep deformation process has not been fully understood. In this paper, we have studied the high temperature bending creep deformation of copper bicrystal with various GB complexions under different loads using molecular dynamics simulation. It has been found that specimen with normal kite GB complexion have better creep resistance properties when subjected to comparatively lower applied load. In case of monolayer Zr segregation, a drastic decrease in creep strength as well as creep plasticity is observed due to inhibition of GB migration. On the other hand, deviation between creep properties for specimen with split-kite GB complexion and split-kite bilayer Zr segregation GB complexion is minimal. Enhanced creep plasticity is observed in case of split-kite bilayer Zr segregation GB complexion, which is due to formation of interpenetrating icosahedral clusters in the necking region. Fracture in specimen with monolayer Zr segregation GB complexion has occurred by means of slip phenomenon at lower deformation load whereas amorphization and necking is observed at higher deformation load. In case of specimen with bilayer Zr segregation GB complexion, it is found that fracture has occurred through amorphization and necking at all deformation loads due to higher GB thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Batoo K M, Kumar S, and Lee C G, Curr Appl Phys 9 (2009) 1072.

    Article  Google Scholar 

  2. Greer J R, and De Hosson J T M, Prog Mater Sci 56 (2011) 654.

    Article  Google Scholar 

  3. Qin E W, Lu L, Tao N R, Tan J, and Lu K, Acta Mater 57 (2009) 6215.

    Article  Google Scholar 

  4. Rupert T J, Cai W, and Schuh C A, Wear 298 (2013) 120.

    Article  Google Scholar 

  5. Ralston K D, Birbilis N, and Davies C H J, Scr Mater 63 (2010) 1201.

    Article  Google Scholar 

  6. Chen H, Jiao Y, and Liu Y, Mater Sci Eng A 631 (2015) 173.

    Article  Google Scholar 

  7. Barrales-Mora L A, Brandenburg J E, and Molodov D A, Acta Mater 80 (2014) 141.

    Article  Google Scholar 

  8. Qiao C, Fu X, Chi R, Guo Y, Wang Q, Liu C, and Jia Y, RSC Adv 5 (2015) 102400.

    Article  Google Scholar 

  9. Hahn E N, and Meyers M A, Mater Sci Eng A 646 (2015) 101.

    Article  Google Scholar 

  10. Cormier J, Nat 537 (2016) 315.

    Article  Google Scholar 

  11. Johannesson T, and Thölen A, Met Sci J 6 (1972) 189.

    Article  Google Scholar 

  12. Meyers M A, Mishra A, and Benson D J, Prog Mater Sci 51 (2006) 427.

    Article  Google Scholar 

  13. Coble R L, J Appl Phys 34 (1963) 1679.

    Article  Google Scholar 

  14. Herring C, J Appl Phys 21 (1950) 437.

    Article  Google Scholar 

  15. Tsenn M C, and Carter N L, Tectonophysics 136 (1987) 1.

    Article  Google Scholar 

  16. Cantwell P R, Tang M, Dillon S J, Luo J, Rohrer G S, and Harmer M P, Acta Mater 62 (2014) 1.

    Article  Google Scholar 

  17. Lejček P, and Hofmann S, Crit Rev Solid State Mater Sci 20 (1995) 1.

    Article  Google Scholar 

  18. Tang M, Carter W C, and Cannon R M, J Mater Sci 41 (2006) 7691.

    Article  Google Scholar 

  19. Dillon S J, Tang M, Carter W C, and Harmer M P, Acta Mater 55 (2007) 6208.

    Article  Google Scholar 

  20. Pan Z, and Rupert T J, Phys Rev B 93 (2016) 134113.

    Article  Google Scholar 

  21. Frolov T, Olmsted D L, Asta M, and Mishin Y, Nat Commun 4(2013) 1899.

    Article  Google Scholar 

  22. Cantwell P R, Ma S, Bojarski S A, Rohrer G S, and Harmer M P, Acta Mater 106 (2016) 78.

    Article  Google Scholar 

  23. Frolov T, Appl Phys Lett 104 (2014) 211905.

    Article  Google Scholar 

  24. Dillon S J, Tai K, and Chen S, Curr Opin Solid State Mater Sci 20 (2016) 324.

    Article  Google Scholar 

  25. Rickman J M, and Luo J, Curr Opin Solid State Mater Sci 20 (2016) 225.

    Article  Google Scholar 

  26. Rohrer G S, Curr Opin Solid State Mater Sci 20 (2016) 231.

    Article  Google Scholar 

  27. Rupert T J, Curr Opin Solid State Mater Sci 20 (2016) 257.

    Article  Google Scholar 

  28. Khalajhedayati A, Pan Z, and Rupert T J, Nat. Commun 7 (2016) 10802.

    Article  Google Scholar 

  29. Khalajhedayati A, and Rupert T J, JOM 67 (2015) 2788.

    Article  Google Scholar 

  30. Frolov T, Divinski S V, Asta M, and Mishin Y, Phys Rev Lett 110 (2013) 255502.

    Article  Google Scholar 

  31. Wen S, Mu X, Yuan X, and Yue Z, Meas 46 (2013) 1592.

    Article  Google Scholar 

  32. Anderson D A, Witzel J G, Christensen D, and Bahia H, U.S. Patent No. 5,187,987, Washington, DC: U.S. Patent and Trademark Office (1993).

  33. Lee S H, Messing G L, and Green D J, J Am Ceram Soc 86 (2003) 877.

    Article  Google Scholar 

  34. Tu S T, Zhuang F K, Zhou G Y, and Sun W, Int J Pressure Vessels Piping 139 (2016) 194.

    Article  Google Scholar 

  35. Reddy K V, Meraj M, and Pal S, Comput Mater Sci 136 (2017) 36.

    Article  Google Scholar 

  36. Plimpton S, J Comput Phys 117 (1995) 1.

    Article  Google Scholar 

  37. Zhang L, Lu C, and Tieu K, Sci Rep 4 (2014) 5919.

    Article  Google Scholar 

  38. Frolov T, Asta M, and Mishin Y, Phys Rev B 92 (2015) 020103.

    Article  Google Scholar 

  39. Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D, and Popel P, Philos Mag 89 (2009) 967.

    Article  Google Scholar 

  40. Evans D J, and Holian B L, J Chem Phys 83 (1985) 4069.

    Article  Google Scholar 

  41. Stukowski A, Modell Simul Mater Sci Eng 18 (2009) 015012.

    Article  Google Scholar 

  42. Honeycutt J D, and Andersen H C, J Phys Chem 91 (1987) 4950.

    Article  Google Scholar 

  43. Kelchner C L, Plimpton S J, and Hamilton J C, Phys Rev B 58 (1998) 11085.

    Article  Google Scholar 

  44. Zhang J C, Chen C, Pei Q X, Wan Q, Zhang W X, and Sha Z D, Mater Des 77 (2015) 1.

    Article  Google Scholar 

  45. Stukowski A, Bulatov V V, and Arsenlis A, Modell Simul Mater Sci Eng 20 (2012) 085007.

    Article  Google Scholar 

  46. Shimizu F, Ogata S, and Li J, Mater Trans 48 (2007) 2923.

    Article  Google Scholar 

  47. Falk M L, and Langer J S, Phys Rev B 57 (1998) 7192.

    Article  Google Scholar 

  48. Faken D, and Jónsson H, Comput Mater Sci 2 (1994) 279.

    Article  Google Scholar 

  49. Timoshenko S P, and Gere J M, Mechanics of Materials, van Nordstrand Reinhold Company, New York (1972).

    Google Scholar 

  50. Berry J, Rottler J, Sinclair C W, and Provatas N, Phys Rev B 92 (2015) 134103.

    Article  Google Scholar 

  51. Xie H, Yin F, Yu T, Lu G, and Zhang Y, Acta Mater 85 (2015) 191.

    Article  Google Scholar 

  52. Diao J, Gall K, and Dunn M L, Nat Mater 2 (2003) 656.

    Article  Google Scholar 

  53. Lao J, and Moldovan D, Appl Phys Lett 93 (2008) 093108.

    Article  Google Scholar 

  54. Rahman M J, Zurob H S, and Hoyt J J, Metall Mater Trans A 47 (2016) 1889.

    Article  Google Scholar 

  55. Ou X, Sietsma J, and Santofimia M J, Modell Simul Mater Sci Eng 24 (2016) 055019.

    Article  Google Scholar 

  56. Bobylev S V, Gutkin M Y, and Ovid’ko I A, Acta Mater 52 (2004) 3793.

    Article  Google Scholar 

  57. Feng S, Qi L, Wang L, Pan S, Ma M, Zhang X, and Liu R, Acta Mater 95 (2015) 236.

    Article  Google Scholar 

  58. Lee M, Lee C M, Lee K R, Ma E, and Lee J C, Acta Mater 59 (2011) 159.

    Article  Google Scholar 

  59. Wakeda M, and Shibutani Y, Acta Mater 58 (2010) 3963.

    Article  Google Scholar 

  60. Lee M, Kim H K, and Lee J C, Met Mater Int 16 (2010) 877.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the computer center of National Institute of Technology Rourkela for giving access to high-performance computing facility (HPCF) required for performing this molecular dynamics study. The authors would also like to thank Ankit Surana of National Institute of Technology Rourkela for some productive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehanshu Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.V., Pal, S. Influence of Grain Boundary Complexion on Deformation Mechanism of High Temperature Bending Creep Process of Cu Bicrystal. Trans Indian Inst Met 71, 1721–1734 (2018). https://doi.org/10.1007/s12666-018-1312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1312-1

Keywords

Navigation