Transactions of the Indian Institute of Metals

, Volume 71, Issue 7, pp 1721–1734 | Cite as

Influence of Grain Boundary Complexion on Deformation Mechanism of High Temperature Bending Creep Process of Cu Bicrystal

  • K. Vijay Reddy
  • Snehanshu Pal
Technical Paper


Despite of substantial advancement, the effect of grain boundary (GB) complexions on high temperature creep deformation process has not been fully understood. In this paper, we have studied the high temperature bending creep deformation of copper bicrystal with various GB complexions under different loads using molecular dynamics simulation. It has been found that specimen with normal kite GB complexion have better creep resistance properties when subjected to comparatively lower applied load. In case of monolayer Zr segregation, a drastic decrease in creep strength as well as creep plasticity is observed due to inhibition of GB migration. On the other hand, deviation between creep properties for specimen with split-kite GB complexion and split-kite bilayer Zr segregation GB complexion is minimal. Enhanced creep plasticity is observed in case of split-kite bilayer Zr segregation GB complexion, which is due to formation of interpenetrating icosahedral clusters in the necking region. Fracture in specimen with monolayer Zr segregation GB complexion has occurred by means of slip phenomenon at lower deformation load whereas amorphization and necking is observed at higher deformation load. In case of specimen with bilayer Zr segregation GB complexion, it is found that fracture has occurred through amorphization and necking at all deformation loads due to higher GB thickness.


Simulations Fracture behaviour Copper alloys Nanocrystalline materials 



The authors acknowledge the computer center of National Institute of Technology Rourkela for giving access to high-performance computing facility (HPCF) required for performing this molecular dynamics study. The authors would also like to thank Ankit Surana of National Institute of Technology Rourkela for some productive discussion.


  1. 1.
    Batoo K M, Kumar S, and Lee C G, Curr Appl Phys 9 (2009) 1072.CrossRefGoogle Scholar
  2. 2.
    Greer J R, and De Hosson J T M, Prog Mater Sci 56 (2011) 654.CrossRefGoogle Scholar
  3. 3.
    Qin E W, Lu L, Tao N R, Tan J, and Lu K, Acta Mater 57 (2009) 6215.CrossRefGoogle Scholar
  4. 4.
    Rupert T J, Cai W, and Schuh C A, Wear 298 (2013) 120.CrossRefGoogle Scholar
  5. 5.
    Ralston K D, Birbilis N, and Davies C H J, Scr Mater 63 (2010) 1201.CrossRefGoogle Scholar
  6. 6.
    Chen H, Jiao Y, and Liu Y, Mater Sci Eng A 631 (2015) 173.CrossRefGoogle Scholar
  7. 7.
    Barrales-Mora L A, Brandenburg J E, and Molodov D A, Acta Mater 80 (2014) 141.CrossRefGoogle Scholar
  8. 8.
    Qiao C, Fu X, Chi R, Guo Y, Wang Q, Liu C, and Jia Y, RSC Adv 5 (2015) 102400.CrossRefGoogle Scholar
  9. 9.
    Hahn E N, and Meyers M A, Mater Sci Eng A 646 (2015) 101.CrossRefGoogle Scholar
  10. 10.
    Cormier J, Nat 537 (2016) 315.CrossRefGoogle Scholar
  11. 11.
    Johannesson T, and Thölen A, Met Sci J 6 (1972) 189.CrossRefGoogle Scholar
  12. 12.
    Meyers M A, Mishra A, and Benson D J, Prog Mater Sci 51 (2006) 427.CrossRefGoogle Scholar
  13. 13.
    Coble R L, J Appl Phys 34 (1963) 1679.CrossRefGoogle Scholar
  14. 14.
    Herring C, J Appl Phys 21 (1950) 437.CrossRefGoogle Scholar
  15. 15.
    Tsenn M C, and Carter N L, Tectonophysics 136 (1987) 1.CrossRefGoogle Scholar
  16. 16.
    Cantwell P R, Tang M, Dillon S J, Luo J, Rohrer G S, and Harmer M P, Acta Mater 62 (2014) 1.CrossRefGoogle Scholar
  17. 17.
    Lejček P, and Hofmann S, Crit Rev Solid State Mater Sci 20 (1995) 1.CrossRefGoogle Scholar
  18. 18.
    Tang M, Carter W C, and Cannon R M, J Mater Sci 41 (2006) 7691.CrossRefGoogle Scholar
  19. 19.
    Dillon S J, Tang M, Carter W C, and Harmer M P, Acta Mater 55 (2007) 6208.CrossRefGoogle Scholar
  20. 20.
    Pan Z, and Rupert T J, Phys Rev B 93 (2016) 134113.CrossRefGoogle Scholar
  21. 21.
    Frolov T, Olmsted D L, Asta M, and Mishin Y, Nat Commun 4(2013) 1899. CrossRefGoogle Scholar
  22. 22.
    Cantwell P R, Ma S, Bojarski S A, Rohrer G S, and Harmer M P, Acta Mater 106 (2016) 78.CrossRefGoogle Scholar
  23. 23.
    Frolov T, Appl Phys Lett 104 (2014) 211905.CrossRefGoogle Scholar
  24. 24.
    Dillon S J, Tai K, and Chen S, Curr Opin Solid State Mater Sci 20 (2016) 324.CrossRefGoogle Scholar
  25. 25.
    Rickman J M, and Luo J, Curr Opin Solid State Mater Sci 20 (2016) 225.CrossRefGoogle Scholar
  26. 26.
    Rohrer G S, Curr Opin Solid State Mater Sci 20 (2016) 231.CrossRefGoogle Scholar
  27. 27.
    Rupert T J, Curr Opin Solid State Mater Sci 20 (2016) 257.CrossRefGoogle Scholar
  28. 28.
    Khalajhedayati A, Pan Z, and Rupert T J, Nat. Commun 7 (2016) 10802.CrossRefGoogle Scholar
  29. 29.
    Khalajhedayati A, and Rupert T J, JOM 67 (2015) 2788.CrossRefGoogle Scholar
  30. 30.
    Frolov T, Divinski S V, Asta M, and Mishin Y, Phys Rev Lett 110 (2013) 255502.CrossRefGoogle Scholar
  31. 31.
    Wen S, Mu X, Yuan X, and Yue Z, Meas 46 (2013) 1592.CrossRefGoogle Scholar
  32. 32.
    Anderson D A, Witzel J G, Christensen D, and Bahia H, U.S. Patent No. 5,187,987, Washington, DC: U.S. Patent and Trademark Office (1993).Google Scholar
  33. 33.
    Lee S H, Messing G L, and Green D J, J Am Ceram Soc 86 (2003) 877.CrossRefGoogle Scholar
  34. 34.
    Tu S T, Zhuang F K, Zhou G Y, and Sun W, Int J Pressure Vessels Piping 139 (2016) 194.CrossRefGoogle Scholar
  35. 35.
    Reddy K V, Meraj M, and Pal S, Comput Mater Sci 136 (2017) 36.CrossRefGoogle Scholar
  36. 36.
    Plimpton S, J Comput Phys 117 (1995) 1.CrossRefGoogle Scholar
  37. 37.
    Zhang L, Lu C, and Tieu K, Sci Rep 4 (2014) 5919.CrossRefGoogle Scholar
  38. 38.
    Frolov T, Asta M, and Mishin Y, Phys Rev B 92 (2015) 020103.CrossRefGoogle Scholar
  39. 39.
    Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D, and Popel P, Philos Mag 89 (2009) 967.CrossRefGoogle Scholar
  40. 40.
    Evans D J, and Holian B L, J Chem Phys 83 (1985) 4069.CrossRefGoogle Scholar
  41. 41.
    Stukowski A, Modell Simul Mater Sci Eng 18 (2009) 015012.CrossRefGoogle Scholar
  42. 42.
    Honeycutt J D, and Andersen H C, J Phys Chem 91 (1987) 4950.CrossRefGoogle Scholar
  43. 43.
    Kelchner C L, Plimpton S J, and Hamilton J C, Phys Rev B 58 (1998) 11085.CrossRefGoogle Scholar
  44. 44.
    Zhang J C, Chen C, Pei Q X, Wan Q, Zhang W X, and Sha Z D, Mater Des 77 (2015) 1.CrossRefGoogle Scholar
  45. 45.
    Stukowski A, Bulatov V V, and Arsenlis A, Modell Simul Mater Sci Eng 20 (2012) 085007.CrossRefGoogle Scholar
  46. 46.
    Shimizu F, Ogata S, and Li J, Mater Trans 48 (2007) 2923.CrossRefGoogle Scholar
  47. 47.
    Falk M L, and Langer J S, Phys Rev B 57 (1998) 7192.CrossRefGoogle Scholar
  48. 48.
    Faken D, and Jónsson H, Comput Mater Sci 2 (1994) 279.CrossRefGoogle Scholar
  49. 49.
    Timoshenko S P, and Gere J M, Mechanics of Materials, van Nordstrand Reinhold Company, New York (1972).Google Scholar
  50. 50.
    Berry J, Rottler J, Sinclair C W, and Provatas N, Phys Rev B 92 (2015) 134103.CrossRefGoogle Scholar
  51. 51.
    Xie H, Yin F, Yu T, Lu G, and Zhang Y, Acta Mater 85 (2015) 191.CrossRefGoogle Scholar
  52. 52.
    Diao J, Gall K, and Dunn M L, Nat Mater 2 (2003) 656.CrossRefGoogle Scholar
  53. 53.
    Lao J, and Moldovan D, Appl Phys Lett 93 (2008) 093108.CrossRefGoogle Scholar
  54. 54.
    Rahman M J, Zurob H S, and Hoyt J J, Metall Mater Trans A 47 (2016) 1889.CrossRefGoogle Scholar
  55. 55.
    Ou X, Sietsma J, and Santofimia M J, Modell Simul Mater Sci Eng 24 (2016) 055019.CrossRefGoogle Scholar
  56. 56.
    Bobylev S V, Gutkin M Y, and Ovid’ko I A, Acta Mater 52 (2004) 3793.CrossRefGoogle Scholar
  57. 57.
    Feng S, Qi L, Wang L, Pan S, Ma M, Zhang X, and Liu R, Acta Mater 95 (2015) 236.CrossRefGoogle Scholar
  58. 58.
    Lee M, Lee C M, Lee K R, Ma E, and Lee J C, Acta Mater 59 (2011) 159.CrossRefGoogle Scholar
  59. 59.
    Wakeda M, and Shibutani Y, Acta Mater 58 (2010) 3963.CrossRefGoogle Scholar
  60. 60.
    Lee M, Kim H K, and Lee J C, Met Mater Int 16 (2010) 877.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations