Characterization of Structure–Property Relationship of Incoloy 825 and SAF 2507 Dissimilar Welds

Technical Paper
  • 20 Downloads

Abstract

This study was carried out to investigate the evaluation of dissimilar welding between Incoloy 825 Ni-based alloy and SAF 2507 super duplex stainless steel. Welding was conducted by pulsed current (PC) and continuous current (CC) gas tungsten arc welding (GTAW) methods using ERNiCrMo-3 filler wire. The microstructure of weld zones and base metal/weld interfaces as well as mechanical properties of weldments were characterized. The results detailed the formation of Nb, and Mo-rich phases in the inter-dendritic regions of weld metals leading to a decrease in impact resistance of weld zones in comparison to parent metals. Presence of more secondary phases at the CCGTA weld metal resulted in higher hardness and lower toughness than that of the PCGTAW sample. During tensile tests, fracture occurred at the Incoloy 825 base metal, and both weldments also underwent ductile mode of fracture. The research addressed the microstructure–property relationship for dissimilar weld joints.

Keywords

Tensile property Impact toughness Microstructure Dissimilar welding Ni-based alloy 

References

  1. 1.
    Huang J B S, Yang J, Lu D H, and Bin W J, Sci Technol Weld 21 (2016) 381.  https://doi.org/10.1080/13621718.2015.1122152.CrossRefGoogle Scholar
  2. 2.
    Mourad A-H I, Khourshid A, and Sharef T, Mater Sci Eng A 549 (2012) 105. http://dx.doi.org/10.1016/j.msea.2012.04.012.CrossRefGoogle Scholar
  3. 3.
    Lee H T, and Lin Y D, Sci Technol Weld 11 (2006) 650.  https://doi.org/10.1179/174329306x147733.CrossRefGoogle Scholar
  4. 4.
    Geng S, Sun J, Guo L, and Wang H, J Manuf Process 19 (2015) 32. http://dx.doi.org/10.1016/j.jmapro.2015.03.009.CrossRefGoogle Scholar
  5. 5.
    Santos T F A, Idagawa H S, and Ramirez A J, Sci Technol Weld 19 (2014) 150.  https://doi.org/10.1179/1362171813y.0000000174.CrossRefGoogle Scholar
  6. 6.
    Pilhagen J, Sieurin H, and Sandström R, Mater Sci Eng A 606 (2014) 40. http://dx.doi.org/10.1016/j.msea.2014.03.049.CrossRefGoogle Scholar
  7. 7.
    Menezes J W A, Abreu H, Kundu S, Bhadeshia H K D H, and Kelly P M, Sci Technol Weld 14 (2009) 4.  https://doi.org/10.1179/136217108x341166.CrossRefGoogle Scholar
  8. 8.
    Manikandan M, Arivazhagan N, Rao M N, and Reddy G M, J Manuf Process 16 (2014) 563. http://dx.doi.org/10.1016/j.jmapro.2014.08.002.CrossRefGoogle Scholar
  9. 9.
    Sandhu S S, and Shahi A S, J Mater Process Technol 233 (2016) 1. http://dx.doi.org/10.1016/j.jmatprotec.2016.02.010.CrossRefGoogle Scholar
  10. 10.
    Aytekin H, and Akcin Y, Mater Des 50 (2013) 515. http://dx.doi.org/10.1016/j.matdes.2013.03.015.CrossRefGoogle Scholar
  11. 11.
    Azizieh M, Sadeghi Alavijeh A, Abbasi M, Balak Z, and Kim H S, Mater Chem Phys 170 (2016) 251. http://dx.doi.org/10.1016/j.matchemphys.2015.12.046.CrossRefGoogle Scholar
  12. 12.
    Mortezaie A, and Shamanian M, Int J Press Vess Pip 116 (2014) 37. http://dx.doi.org/10.1016/j.ijpvp.2014.01.002.CrossRefGoogle Scholar
  13. 13.
    Pavan H V, Vikrant K S N, Ravibharath R, and Singh K, Mater Sci Eng A 642 (2015) 32. http://dx.doi.org/10.1016/j.msea.2015.06.065.CrossRefGoogle Scholar
  14. 14.
    Naffakh H, Shamanian M, and Ashrafizadeh F, J Mater Process Technol 209 (2009) 3628.  https://doi.org/10.1016/j.jmatprotec.2008.08.019.CrossRefGoogle Scholar
  15. 15.
    Sridhar R, Ramkumar K D, and Arivazhagan N, Acta Metall Sin (Engl Lett) 27 (2014) 1018.  https://doi.org/10.1007/s40195-014-0116-5.CrossRefGoogle Scholar
  16. 16.
    Ramkumar K D, Dev S, Saxena V, Choudhary A, Arivazhagan N, and Narayanan S, Mater Des 87 (2015) 663. http://dx.doi.org/10.1016/j.matdes.2015.08.075.CrossRefGoogle Scholar
  17. 17.
    Shah Hosseini H, Shamanian M, and Kermanpur A, Int J Press Vess Pip 144 (2016) 18.  https://doi.org/10.1016/j.ijpvp.2016.05.004.CrossRefGoogle Scholar
  18. 18.
    Kumar K G, Ramkumar K D, and Arivazhagan N, J Mech Sci Technol 29 (2015) 1039.  https://doi.org/10.1007/s12206-014-1112-4.CrossRefGoogle Scholar
  19. 19.
    Abdollahi A, Shamanian M, and Golozar M A, Trans Indian Inst Met (2017).  https://doi.org/10.1007/s12666-017-1192-9.Google Scholar
  20. 20.
    Yousefieh M, Shamanian M, and Arghavan A R, Metallogr Microstruct Anal 1 (2012) 85.  https://doi.org/10.1007/s13632-012-0017-9.CrossRefGoogle Scholar
  21. 21.
    Ramkumar R D, Chandrasekhar A, Srivastava A, Preyas H, Chandra S, Dev S, and Arivazhagan N, J Manuf Process 24 (2016) 46. http://dx.doi.org/10.1016/j.jmapro.2016.07.006.CrossRefGoogle Scholar
  22. 22.
    Arivarasu M, Manikandan M, Vinoth Jebaraj A, and Arivazhagan N, Ciên Tecnol Mater 29.2 (2017) 39. http://dx.doi.org/10.1016/j.ctmat.2017.03.001.Google Scholar
  23. 23.
    Srikanth A, and Manikandan M, J Manuf Process 30 (2017) 452.  https://doi.org/10.1016/j.jmapro.2017.10.014.CrossRefGoogle Scholar
  24. 24.
    Farahani E, Shamanian M, and Ashrafizadeh F, AMAE Int J Manuf Mater Sci 2 (2012) 1.Google Scholar
  25. 25.
    Dev S, Ramkumar K D, Arivazhagan N, and Rajendran R, Trans Indian Inst Met 70 (2017) 729.  https://doi.org/10.1007/s12666-017-1085-y.CrossRefGoogle Scholar
  26. 26.
    Ramkumar K D, Chandrasekhar A, Singh A K, Ahuja S, and Arivazhagan N, Metallogr Microstruct Anal 4 (2015) 525.  https://doi.org/10.1007/s13632-015-0236-y.CrossRefGoogle Scholar
  27. 27.
    Elshawesh F, Elhoud A, Zeglam W, Abusowa K, and Mesalem A, J Fail Anal Prev 15 (2015) 7. http://dx.doi.org/10.1007/s11668-014-9900-9.CrossRefGoogle Scholar
  28. 28.
    Kangazian J, Shamanian M, Ashrafi A, J Manuf Process 29 (2017) 376.  https://doi.org/10.1016/j.jmapro.2017.08.012.Google Scholar
  29. 29.
    Kangazian J, and Shamanian M, J Manuf Process 26 (2017) 407. http://dx.doi.org/10.1016/j.jmapro.2017.03.006.CrossRefGoogle Scholar
  30. 30.
    Ramkumar K D, Singh A, Raghuvanshi S, Bajpai A, Solanki T, Arivarasu M, Arivazhagan N, and Narayanan S, J Manuf Process 19 (2015) 212. http://dx.doi.org/10.1016/j.jmapro.2015.04.005.CrossRefGoogle Scholar
  31. 31.
    ASM Handbook on Mechanical Testing and Evaluation, vol. 8, ASM International (2004).Google Scholar
  32. 32.
    Sayiram G, and Arivazhagan N, Mater Charact 102 (2015) 180. http://dx.doi.org/10.1016/j.matchar.2015.03.006.CrossRefGoogle Scholar
  33. 33.
    Dehmolaei R, Shamanian M, and Kermanpur A, Mater Charact 59 (2008) 1447.  https://doi.org/10.1016/j.matchar.2008.01.013.CrossRefGoogle Scholar
  34. 34.
    Busch J D, Debarbadillo J J, and Krane M J M, Metall Mater Trans A, 44A (2013) 5295.  https://doi.org/10.1007/s11661-013-1659-1.CrossRefGoogle Scholar
  35. 35.
    Lippold J C, and Kotecki D J, Welding Metallurgy and Weldability of Stainless Steels, Wiley, Hoboken, New Jersey (2005).Google Scholar
  36. 36.
    Eghlimi A, Shamanian M, and Raeissi K, Surf Coat Technol 244 (2014) 45. http://dx.doi.org/10.1016/j.surfcoat.2014.01.047.CrossRefGoogle Scholar
  37. 37.
    Gholami M, Hoseinpoor M, and Moayed M H, Corros Sci 94 (2015) 156. http://dx.doi.org/10.1016/j.corsci.2015.01.054.CrossRefGoogle Scholar
  38. 38.
    Jiang Y, Tan H, Wang Z, Hong J, Jiang L, and Li J, Corros Sci 70 (2013) 252. http://dx.doi.org/10.1016/j.corsci.2013.01.037.CrossRefGoogle Scholar
  39. 39.
    Sireesha M, Shankar V, Albert S K, and Sundaresan S, Mater Sci Eng A 292 (2000) 74.CrossRefGoogle Scholar
  40. 40.
    DuPont J N, Lippold J C, and Kiser S D, Welding Metallurgy and Weldability of Ni-Base Alloys, Wiley, Hoboken, New Jersey (2009).CrossRefGoogle Scholar
  41. 41.
    Maltin A, Galloway A M, and Mweemba M, Metall Mater Trans A 45a (2014) 2014.  https://doi.org/10.1007/s11661-014-2308-z.Google Scholar
  42. 42.
    Silva C, de Miranda H C, Motta M F, Farias J P, Afonso C R M, and Ramirez A J, J Mater Res Technol 2 (2013) 228.  https://doi.org/10.1016/j.jmrt.2013.02.008.CrossRefGoogle Scholar
  43. 43.
    Wang H, and He G, Mater Sci Eng A 672 (2016) 15.  https://doi.org/10.1016/J.Msea.2016.06.067.CrossRefGoogle Scholar
  44. 44.
    Banovic S W, DuPont J N, and Marder A R, Sci Technol Weld 7 (2002) 374. http://dx.doi.org/10.1179/136217102225006804.CrossRefGoogle Scholar
  45. 45.
    Manikandan S G K, Sivakumar D, Prasad Rao K, and Kamaraj M, J Mater Process Technol 214 (2014) 358. http://dx.doi.org/10.1016/j.jmatprotec.2013.09.006.CrossRefGoogle Scholar
  46. 46.
    Ramkumar K D, Oza S, Periwal S, Arivazhagan N, Sridhar R, and Narayanan S, Ciên Tecnol Mater 27 (2015) 41. http://dx.doi.org/10.1016/j.ctmat.2015.04.004.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations