Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 7, pp 1687–1697 | Cite as

Optimization of Retrogression Parameters of AA7010 Alloy

  • Yogesh Y. Mahajan
  • R. K. Paretkar
  • D. R. Peshwe
Technical Paper

Abstract

The present work has been carried out on an AA7010 aluminium alloy so as to optimize the retrogression and re-aging (RRA) schedule that leads to the optimal combination of mechanical properties and stress corrosion cracking (SCC) resistance. The alloy is heat treated at different retrogression temperatures for varying retrogression time and subsequently the window for optimization of retrogression parameters of RRA schedule is established after re-aging. It is found that retrogression at 473 K for 35 min results into the best combination of the above properties. The enhancement in mechanical properties and SCC resistance is due to the formation of discontinuous and coarse precipitates along the grain boundaries and also the copper enrichment of the precipitates that occur during optimum RRA schedule. It is established that proper control of the process parameters is essential to control the final microstructure and thereby enhance the mechanical properties and SCC resistance of the alloys.

Keywords

Retrogression Re-aging (RRA) SCC resistance Peak aging Electrical conductivity SEM TEM 

Notes

Acknowledgements

The authors are pleased to acknowledge financial support for this research from Defence Research and Development Organization (DRDO)—Naval Research Board, Government of India, and Aeronautical Development Agency (ADA) for its cooperation.

References

  1. 1.
    Oliveira A F Jr, de Barros M C, Cardoso K R, and Travessa D N, Mater Sci Eng A 379 (2004) 321.CrossRefGoogle Scholar
  2. 2.
    Chun F, Zhi-yi L, Ai-lin N, Yan-bin L, and Su-min Z, Trans Nonferrous Met Soc China 16 (2006) 1163.CrossRefGoogle Scholar
  3. 3.
    Es-Said O S, Frazier W E, and Lee E W, JOM 55 (2003) 45.CrossRefGoogle Scholar
  4. 4.
    Hongying L, Geng J, Dong X, Wang C, and Zheng F, J Wuhan Univ Technol Mater Sci Ed 22 (2007) 191.CrossRefGoogle Scholar
  5. 5.
    Park J K, and Ardell A, Acta Metall Et Mater 39 (1991) 591.CrossRefGoogle Scholar
  6. 6.
    Cina B, US Patent no. 3,856,584, December 24, (1974).Google Scholar
  7. 7.
    Park J K, and Ardell A J, Metall Trans A 15A (1984) 1531.CrossRefGoogle Scholar
  8. 8.
    Mindivan H, Baydogan M, Kayali E S, and Cimenoglu H, Mater Charact 54 (2005) 263.CrossRefGoogle Scholar
  9. 9.
    Wu X J, Raizenne M D, Holt R T, Poon C, and Wallace W, Can Aeronaut Space J 47 (2001) 131.Google Scholar
  10. 10.
    Robinson J S, Mater Sci Technol 19 (2003) 1697.CrossRefGoogle Scholar
  11. 11.
    Peng G S, Chen K H, Chen S Y, and Fang H C, Trans Nonferrous Met Soc China (English Edition) 22 (2012) 803.CrossRefGoogle Scholar
  12. 12.
    Li Z, Xiong B, Zhang Y, Zhu B, Wang F, and Liu H, J Mater Process Technol 209 (2009) 2021.CrossRefGoogle Scholar
  13. 13.
    Tsai T C C, and Chuang T H H, Mater Sci Eng A 225 (1997) 135.CrossRefGoogle Scholar
  14. 14.
    Angappan M, Sampath V, Ashok B, and Deepkumar V P, Mater Des 32 (2011) 4050.CrossRefGoogle Scholar
  15. 15.
    Zielinski A, Warmuzek M, Gazda A, Jezierska E, and Chrzanowski J, Adv Mater Sci 2 (2002) 33.Google Scholar
  16. 16.
    Reda Y, Abdel-Karim R, and Elmahallawi I, Mater Sci Eng A 485 (2008) 468.CrossRefGoogle Scholar
  17. 17.
    Lin J C, Liao H L, Jehng W D, Chang C H, and Lee S L, Corros Sci 48 (2006) 3139.CrossRefGoogle Scholar
  18. 18.
    Rajan K, Wallace W, and Beddoes J C, J Mater Sci 17 (1982) 2817.CrossRefGoogle Scholar
  19. 19.
    Park J K, Mater Sci Eng A 103 (1988) 223.CrossRefGoogle Scholar
  20. 20.
    Marlaud T, Deschamps A, Bley F, Lefebvre W, and Baroux B, Acta Mater 58 (2010) 4814.CrossRefGoogle Scholar
  21. 21.
    Xiao Y-P, Pan Q-L, Li W-B, Liu X-Y, and He Y-B, Mater Des 32 (2011) 2149.CrossRefGoogle Scholar
  22. 22.
    Ning A-l, Liu Z-y, Peng B-s, and Zeng S-m, Trans Nonferrous Met Soc China 17 (2007) 1005.CrossRefGoogle Scholar
  23. 23.
    Aluminium alloy AL-P7010-T7452—Hand and die forgings’, AECMA standard prEN 2682. The European Association of Aerospace Industries (AECMA), Brussels (1998).Google Scholar
  24. 24.
    Zaid H R, Hatab A M, and Ibrahim A M A J Min Metall Sect B Metall 47 (2011) 31.CrossRefGoogle Scholar
  25. 25.
    Rometsch P A, Zhang Y, and Knight S, Trans Nonferrous Met Soc China (English Edition) 24 (2014) 2003.CrossRefGoogle Scholar
  26. 26.
    Wang G, Zhao Z, Cu J, and Guo Q, J Wuhan Univ Technol Mater Sci Ed 28 (2013) 184.CrossRefGoogle Scholar
  27. 27.
    Peng G, Chen K, Chen S, and Fang H, Mater Sci Eng A 528 (2011) 4014.CrossRefGoogle Scholar
  28. 28.
    Robinson J S, and Tanner D A, J Eng Mater Technol 130 (2008) 1.CrossRefGoogle Scholar
  29. 29.
    Immarigeon J-P, Holt R T, Koul A K, Zhao L, Wallace W, and Beddoes J C, Mater Charact 35 (1995) 41.CrossRefGoogle Scholar
  30. 30.
    Liao H-L, Lin J-C, and Lee S-L, Corros Sci 51 (2009) 209.CrossRefGoogle Scholar
  31. 31.
    Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, and Miller W S, Mater Sci Eng A 280 (2000) 102.CrossRefGoogle Scholar
  32. 32.
    Baydoǧan M, Çimenoǧlu H, and Kayali E S, Wear 257 (2004) 852.CrossRefGoogle Scholar
  33. 33.
    Fang S F, Wang M P, and Song M, Mater Des 30 (2009) 2460.CrossRefGoogle Scholar
  34. 34.
    Li J F, Birbilis N, Li C X, Jia Z Q, Cai B, and Zheng Z Q, Mater Charact 60 (2009) 1334.CrossRefGoogle Scholar
  35. 35.
    ASTM G47-98(2011) Standard test method for determining susceptibility to stress-corrosion cracking of 2xxx and 7xxx aluminium alloy products.Google Scholar
  36. 36.
    Zielinski A, Renauld E, Puiggali M, Olive J M, Cid M, and Desjardins D, J Mater Process Technol 53 (1995) 491.CrossRefGoogle Scholar
  37. 37.
    Dixit M, Mishra R S, and Sankaran K K, Mater Sci Eng A 478 (2008) 163.CrossRefGoogle Scholar
  38. 38.
    Shastry C R, and Judd G, Metall Trans 3 (1972) 779.CrossRefGoogle Scholar
  39. 39.
    Huang L, Chen K, and Li S, Mater Sci Eng B Solid State Mater Adv Technol 177 (2012) 862.CrossRefGoogle Scholar
  40. 40.
    DTD 5636-1982. Die forging of Al–Zn–Mg–Cu–Zr alloy (7010-T736).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Yogesh Y. Mahajan
    • 1
  • R. K. Paretkar
    • 1
  • D. R. Peshwe
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringVisvesvaraya National Institute of Technology (VNIT)NagpurIndia

Personalised recommendations