Skip to main content
Log in

Optimization of Retrogression Parameters of AA7010 Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present work has been carried out on an AA7010 aluminium alloy so as to optimize the retrogression and re-aging (RRA) schedule that leads to the optimal combination of mechanical properties and stress corrosion cracking (SCC) resistance. The alloy is heat treated at different retrogression temperatures for varying retrogression time and subsequently the window for optimization of retrogression parameters of RRA schedule is established after re-aging. It is found that retrogression at 473 K for 35 min results into the best combination of the above properties. The enhancement in mechanical properties and SCC resistance is due to the formation of discontinuous and coarse precipitates along the grain boundaries and also the copper enrichment of the precipitates that occur during optimum RRA schedule. It is established that proper control of the process parameters is essential to control the final microstructure and thereby enhance the mechanical properties and SCC resistance of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oliveira A F Jr, de Barros M C, Cardoso K R, and Travessa D N, Mater Sci Eng A 379 (2004) 321.

    Article  Google Scholar 

  2. Chun F, Zhi-yi L, Ai-lin N, Yan-bin L, and Su-min Z, Trans Nonferrous Met Soc China 16 (2006) 1163.

    Article  Google Scholar 

  3. Es-Said O S, Frazier W E, and Lee E W, JOM 55 (2003) 45.

    Article  Google Scholar 

  4. Hongying L, Geng J, Dong X, Wang C, and Zheng F, J Wuhan Univ Technol Mater Sci Ed 22 (2007) 191.

    Article  Google Scholar 

  5. Park J K, and Ardell A, Acta Metall Et Mater 39 (1991) 591.

    Article  Google Scholar 

  6. Cina B, US Patent no. 3,856,584, December 24, (1974).

  7. Park J K, and Ardell A J, Metall Trans A 15A (1984) 1531.

    Article  Google Scholar 

  8. Mindivan H, Baydogan M, Kayali E S, and Cimenoglu H, Mater Charact 54 (2005) 263.

    Article  Google Scholar 

  9. Wu X J, Raizenne M D, Holt R T, Poon C, and Wallace W, Can Aeronaut Space J 47 (2001) 131.

    Google Scholar 

  10. Robinson J S, Mater Sci Technol 19 (2003) 1697.

    Article  Google Scholar 

  11. Peng G S, Chen K H, Chen S Y, and Fang H C, Trans Nonferrous Met Soc China (English Edition) 22 (2012) 803.

    Article  Google Scholar 

  12. Li Z, Xiong B, Zhang Y, Zhu B, Wang F, and Liu H, J Mater Process Technol 209 (2009) 2021.

    Article  Google Scholar 

  13. Tsai T C C, and Chuang T H H, Mater Sci Eng A 225 (1997) 135.

    Article  Google Scholar 

  14. Angappan M, Sampath V, Ashok B, and Deepkumar V P, Mater Des 32 (2011) 4050.

    Article  Google Scholar 

  15. Zielinski A, Warmuzek M, Gazda A, Jezierska E, and Chrzanowski J, Adv Mater Sci 2 (2002) 33.

    Google Scholar 

  16. Reda Y, Abdel-Karim R, and Elmahallawi I, Mater Sci Eng A 485 (2008) 468.

    Article  Google Scholar 

  17. Lin J C, Liao H L, Jehng W D, Chang C H, and Lee S L, Corros Sci 48 (2006) 3139.

    Article  Google Scholar 

  18. Rajan K, Wallace W, and Beddoes J C, J Mater Sci 17 (1982) 2817.

    Article  Google Scholar 

  19. Park J K, Mater Sci Eng A 103 (1988) 223.

    Article  Google Scholar 

  20. Marlaud T, Deschamps A, Bley F, Lefebvre W, and Baroux B, Acta Mater 58 (2010) 4814.

    Article  Google Scholar 

  21. Xiao Y-P, Pan Q-L, Li W-B, Liu X-Y, and He Y-B, Mater Des 32 (2011) 2149.

    Article  Google Scholar 

  22. Ning A-l, Liu Z-y, Peng B-s, and Zeng S-m, Trans Nonferrous Met Soc China 17 (2007) 1005.

    Article  Google Scholar 

  23. Aluminium alloy AL-P7010-T7452—Hand and die forgings’, AECMA standard prEN 2682. The European Association of Aerospace Industries (AECMA), Brussels (1998).

  24. Zaid H R, Hatab A M, and Ibrahim A M A J Min Metall Sect B Metall 47 (2011) 31.

    Article  Google Scholar 

  25. Rometsch P A, Zhang Y, and Knight S, Trans Nonferrous Met Soc China (English Edition) 24 (2014) 2003.

    Article  Google Scholar 

  26. Wang G, Zhao Z, Cu J, and Guo Q, J Wuhan Univ Technol Mater Sci Ed 28 (2013) 184.

    Article  Google Scholar 

  27. Peng G, Chen K, Chen S, and Fang H, Mater Sci Eng A 528 (2011) 4014.

    Article  Google Scholar 

  28. Robinson J S, and Tanner D A, J Eng Mater Technol 130 (2008) 1.

    Article  Google Scholar 

  29. Immarigeon J-P, Holt R T, Koul A K, Zhao L, Wallace W, and Beddoes J C, Mater Charact 35 (1995) 41.

    Article  Google Scholar 

  30. Liao H-L, Lin J-C, and Lee S-L, Corros Sci 51 (2009) 209.

    Article  Google Scholar 

  31. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, and Miller W S, Mater Sci Eng A 280 (2000) 102.

    Article  Google Scholar 

  32. Baydoǧan M, Çimenoǧlu H, and Kayali E S, Wear 257 (2004) 852.

    Article  Google Scholar 

  33. Fang S F, Wang M P, and Song M, Mater Des 30 (2009) 2460.

    Article  Google Scholar 

  34. Li J F, Birbilis N, Li C X, Jia Z Q, Cai B, and Zheng Z Q, Mater Charact 60 (2009) 1334.

    Article  Google Scholar 

  35. ASTM G47-98(2011) Standard test method for determining susceptibility to stress-corrosion cracking of 2xxx and 7xxx aluminium alloy products.

  36. Zielinski A, Renauld E, Puiggali M, Olive J M, Cid M, and Desjardins D, J Mater Process Technol 53 (1995) 491.

    Article  Google Scholar 

  37. Dixit M, Mishra R S, and Sankaran K K, Mater Sci Eng A 478 (2008) 163.

    Article  Google Scholar 

  38. Shastry C R, and Judd G, Metall Trans 3 (1972) 779.

    Article  Google Scholar 

  39. Huang L, Chen K, and Li S, Mater Sci Eng B Solid State Mater Adv Technol 177 (2012) 862.

    Article  Google Scholar 

  40. DTD 5636-1982. Die forging of Al–Zn–Mg–Cu–Zr alloy (7010-T736).

Download references

Acknowledgements

The authors are pleased to acknowledge financial support for this research from Defence Research and Development Organization (DRDO)—Naval Research Board, Government of India, and Aeronautical Development Agency (ADA) for its cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Y. Mahajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, Y.Y., Paretkar, R.K. & Peshwe, D.R. Optimization of Retrogression Parameters of AA7010 Alloy. Trans Indian Inst Met 71, 1687–1697 (2018). https://doi.org/10.1007/s12666-018-1307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1307-y

Keywords

Navigation