Advertisement

Transactions of the Indian Institute of Metals

, Volume 71, Issue 7, pp 1699–1713 | Cite as

Formation of ZrO2–SiC Composite Coating on Zirconium by Plasma Electrolytic Oxidation in Different Electrolyte Systems Comprising of SiC Nanoparticles

  • Arun Sukumaran
  • Hariprasad Sampatirao
  • Ravisankar Balasubramanian
  • Evgeny Parfenov
  • Veta Mukaeva
  • Rameshbabu Nagumothu
Technical Paper
  • 75 Downloads

Abstract

Plasma electrolytic oxidation (PEO) coupled with electrophoretic deposition (EPD) was used to fabricate ZrO2/SiC composite coating on the zirconium metal. The PEO–EPD process was carried out in three different electrolyte systems consisting of 5 g/l sodium aluminate or trisodium orthophosphate or sodium metasilicate with 4 g/l SiC nanoparticles. The X-ray diffraction results indicate monoclinic zirconia is the major phase in phosphate and silicate electrolyte while the coating produced in aluminate electrolyte is composed of tetragonal zirconia. The potentiodynamic polarization studies (PDP) indicate that composite coating produced in phosphate + SiC nanoparticle containing electrolyte exhibit superior resistance to corrosion, which can be attributed to the pore-free morphology of the coating. All the PEO–EPD coatings show exceptionally good adhesion strength (Lc  > 40 N). The coating fabricated in phosphate + SiC nanoparticles is found to be the best coating because of its superior resistance to corrosion and reasonably good adhesion strength.

Keywords

Zirconium Plasma electrolytic oxidation Silicon carbide Electrophoretic deposition Corrosion properties Adhesion strength 

Notes

Acknowledgements

The authors would like to acknowledge the project grants received from the Department of Science and Technology (DST), New Delhi (Ref. No INT/RUS/RFBR/IDIR/P-5/2016) and Russian Foundation for Basic Research (RFBR), Moscow (Ref. No 16-53-48008) under the DST-RFBR inter-disciplinary scientific cooperation programme to carry out this work.

References

  1. 1.
    Raj B, and Mudali U K, Prog Nucl Energ 48 (2006) 283.CrossRefGoogle Scholar
  2. 2.
    Miyake M, Uno M, and Yamanaka S, J Nucl Mater 270 (1999) 233.CrossRefGoogle Scholar
  3. 3.
    Fisher N J, Weckwerth M K, Grandison D A E, and Cotnam B M, Nucl Eng Des 213 (2002) 79.CrossRefGoogle Scholar
  4. 4.
    Sanchez A G, Schreiner W, Duffo G, and Cere S, Appl Surf Sci 257 (2011) 6397.CrossRefGoogle Scholar
  5. 5.
    Leushake U, Krell T, Schulz U, Peters M, Kaysser W A, and Rabin B H, Surf Coat Technol 94–95 (1997) 131.CrossRefGoogle Scholar
  6. 6.
    Brenier R, Mugnier J, and Mirica E, Appl Surf Sci 143 (1999) 85.CrossRefGoogle Scholar
  7. 7.
    Shanmugavelayutham G, Yano S, and Kobayashi A, Vacuum 80 (2006) 1336.CrossRefGoogle Scholar
  8. 8.
    Zhou F Y, Wang B L, Qiu K J, Li H F, Li L, Zheng Y F, and Han Y, Appl Surf Sci 265 (2013) 878.CrossRefGoogle Scholar
  9. 9.
    Klapkiv M D, Povstyana N Y, and Nykyforchyn H M, Mater Sci 42 (2006) 277.CrossRefGoogle Scholar
  10. 10.
    Fatimah S, Kamil M P, Kwon J H, Kaseem M, and Ko Y G, J Alloys Compd 707 (2016) 358.CrossRefGoogle Scholar
  11. 11.
    Hariprasad S, Gowtham S, Arun S, Ashok M, and Rameshbabu N, J Alloys Compd 727 (2017) 698.Google Scholar
  12. 12.
    Venkateswarlu K, Rameshbabu N, Sreekanth D, Bose A C, Muthupandi V, and Subramanian S, Ceram Int 39 (2013) 801.CrossRefGoogle Scholar
  13. 13.
    Tu W, Cheng Y, Wang X, Zhan T, Han J, and Cheng Y, J Alloys Compd 725 (2017) 199.CrossRefGoogle Scholar
  14. 14.
    Choi J W, Kim G W, Shin K R, Yoo B, and Shin D H, J Alloys Compd 726 (2017) 930.CrossRefGoogle Scholar
  15. 15.
    Sowa M, Woszczak M, Kazek-k A, Dercz G, Korotin D M, Zhidkov I S, and Simka W, Appl Surf Sci 407 (2017) 52.CrossRefGoogle Scholar
  16. 16.
    Parfenov E V, Yerokhin A, Nevyantseva R R, Gorbatkov M V, Liang C J, and Matthews A, Surf Coat Technol 269 (2015) 2.CrossRefGoogle Scholar
  17. 17.
    Cheng Y, Cao J, Peng Z, Wang Q, Matykina E, Skeldon P, and Thompson G E, Electrochim Acta 116 (2014) 453.CrossRefGoogle Scholar
  18. 18.
    Cheng Y, Wu F, Dong J, Wu X, Xue Z, Matykina E, Skeldon P, and Thompson G E, Electrochim Acta 85 (2012) 25.CrossRefGoogle Scholar
  19. 19.
    Cheng Y, and Fan W U, T Nonferr Metal Soc 22 (2012) 1638.CrossRefGoogle Scholar
  20. 20.
    Cheng Y, Wu F, Matykina E, Skeldon P, and Thompson G E Corros Sci 59 (2012) 307.CrossRefGoogle Scholar
  21. 21.
    Zou Z, Xue W, Jia X, Du J, Wang R, and Weng L, Surf Coat Technol 222 (2013) 62.CrossRefGoogle Scholar
  22. 22.
    Sowa M, Dercz G, Suchanek K, and Simka W, Appl Surf Sci 346 (2015) 534.CrossRefGoogle Scholar
  23. 23.
    Arrabal R, Matykina E, Viejo F, Skeldon P, Thompson G E, and Merino M C Appl Surf Sci 254 (2008) 6937.CrossRefGoogle Scholar
  24. 24.
    Matykina E, Arrabal R, Monfort F, Skeldon P, and Thompson G E, Appl Surf Sci 255 (2008) 2830.CrossRefGoogle Scholar
  25. 25.
    Bahramian A, Raeissi K, and Hakimizad A, Appl Surf Sci 351 (2015) 13.CrossRefGoogle Scholar
  26. 26.
    Bai Y, Park I S, Lee S J, Bae T S, Duncan W, Swain M, and Lee M H, Appl Surf Sci 257 (2011) 7010.CrossRefGoogle Scholar
  27. 27.
    Yu L, Cao J, and Cheng Y, Surf Coat Technol 276 (2015) 266.CrossRefGoogle Scholar
  28. 28.
    Nasiri Vatan H, Ebrahimi-kahrizsangi R, and Kasiri-asgarani M, J Alloys Compd 683 (2016) 241.CrossRefGoogle Scholar
  29. 29.
    Lu X, Mohedano M, Blawert C, Matykina E, Arrabal R, and Kainer K U, Surf Coat Technol 307 (2016) 1165.CrossRefGoogle Scholar
  30. 30.
    Aliofkhazraei M, and Rouhaghdam A S, Surf Coat Technol 205 (2011) S57.CrossRefGoogle Scholar
  31. 31.
    Ryong K, Kim Y S, Kim G W, Ko Y G, and Shin D H, Colloids Surf B 131 (2015) 47.CrossRefGoogle Scholar
  32. 32.
    Garvie R C, J Phys Chem 69 (1965) 1238.CrossRefGoogle Scholar
  33. 33.
    Heuer A H, Claussen N, Kriven W M, and Ruhle M, J Am Ceram Soc 65 (1982) 642.CrossRefGoogle Scholar
  34. 34.
    Moros G, Marti M C, Carda J, Tena M A, Escribano P, and Anglada M, J Mater Sci 28 (1993) 5852.CrossRefGoogle Scholar
  35. 35.
    Nagarajan V S, and Rao K J, J Mater Sci 24 (1989) 2140.CrossRefGoogle Scholar
  36. 36.
    Muller E, Oestreich C, Klemm V, Brendler E, Ferkel H, and Riehemann W, Part Part Syst Charact 19 (2002) 169.CrossRefGoogle Scholar
  37. 37.
    Hong J S, De la Torre S D, Miyamoto K, Miyamoto H, and Gao L, Mater Lett 37 (1998) 6.CrossRefGoogle Scholar
  38. 38.
    Yan Y, Han Y, and Huang J, Scr Mater 59 (2008) 203.CrossRefGoogle Scholar
  39. 39.
    K.L. Cheng, The negative charge of nanoparticles, Microchem. J 82 (2006) 119–120.CrossRefGoogle Scholar
  40. 40.
    Cakmat E, Tekin K C, Malayoglu U, and Shrestha S, Surf Coat Technol 204 (2010) 1305.CrossRefGoogle Scholar
  41. 41.
    Nie X, Leyland A, Song H W, Yerokhin A L, Dowey S J, and Matthews A, Surf Coat Technol 116–119 (1999) 1055.CrossRefGoogle Scholar
  42. 42.
    Graeve O A, Shackelford J F, and Doremus R H (Eds.), Ceramic and Glass Materials Structure: Properties and Processing, Springer, New York (2008) p 169.Google Scholar
  43. 43.
    He Y J,. Winnubst A J A, Schipper D J, Burggraaf A J and Verweij H, Wear 210 (1997) 178.CrossRefGoogle Scholar
  44. 44.
    Chen Y, Nie X, and Northwood D O, Surf Coat Technol 205 (2010) 1774.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Arun Sukumaran
    • 1
  • Hariprasad Sampatirao
    • 1
  • Ravisankar Balasubramanian
    • 1
  • Evgeny Parfenov
    • 2
  • Veta Mukaeva
    • 2
  • Rameshbabu Nagumothu
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Ufa State Aviation Technical University (USATU)UfaRussia

Personalised recommendations