Deposition, Characterization and Evaluation of Monolayer and Multilayer Ni, Ni–P and Ni–P–Nano ZnOp Coatings

  • Ali Varmazyar
  • Saeed Reza Allahkaram
  • Soheil Mahdavi
Review Paper
  • 13 Downloads

Abstract

Ni, Ni–P and Ni–P–ZnOp monolayer films along with multilayer coatings containing different arrangements of these layers were produced on steel substrates by electrodeposition and electroless deposition techniques. Co-deposition of ZnO nano-particles, as well as morphology, cross-section, microstructure and microhardness of coatings were investigated. Corrosion behaviors of monolayer coatings were studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques, and the results were compared to multilayer films. Results revealed that, Ni–P–1.5 vol% ZnOp monolayer film obtained from a bath with 4 g L−1 of these particles had the highest hardness between all samples. Further addition of nano-particles to the bath lead to the formation of discontinuous films. Most of the multilayer coatings with different arrangements exhibited higher corrosion resistance as compared to monolayer films. Corrosion current density of three-layer Ni–P–ZnOp/Ni/Ni–P coating, considered as the most corrosion resistant film, was about 538 times lower than monolayer Ni–P coating.

Keywords

Ni–P Ni–P–ZnOp Multilayer coatings Electrodeposition Electroless deposition Corrosion 

References

  1. 1.
    Srinivasan K N, and Thangavelu P R, Trans Inst Met Finish 90 (2012) 105.CrossRefGoogle Scholar
  2. 2.
    Yaghoobi M, Bostani B, Asl Farshbaf P, and Parvini Ahmadi N, Trans Indian Inst Met (2017).  https://doi.org/10.1007/s12666-017-1169-8.
  3. 3.
    Sun W C, Zhang P, Zhang F, Hou W W, and Zhao K, Trans Inst Met Finish 93 (2015) 180.CrossRefGoogle Scholar
  4. 4.
    Hadipour A, Bahrololoom M E, Monirvaghefi S M, and Bahramkia A R, Trans Indian Inst Met 69 (2016) 1733.CrossRefGoogle Scholar
  5. 5.
    Afroukhteh S, Dehghanian C, and Emamy M, Prog Nat Sci Mater Int 22 (2012) 318.CrossRefGoogle Scholar
  6. 6.
    Gu C, Lian J, Li G, Niu L, and Jiang Z, Surf Coat Technol 197 (2005) 61.CrossRefGoogle Scholar
  7. 7.
    Li C, Wang Y, and Pan Z, Mater Des 47 (2013) 443.CrossRefGoogle Scholar
  8. 8.
    Gyawali G, Cho S H, and Lee S W, Met Mater Int 19 (2013) 113.CrossRefGoogle Scholar
  9. 9.
    Esmaeel Nad E, and Ehteshamzadeh M, Surf Eng Appl Electrochem 50 (2014) 50.CrossRefGoogle Scholar
  10. 10.
    Alirezaei S, Monirvaghefi S, Salehi M, and Saatchi A, Surf Coat Technol 184 (2004) 170.CrossRefGoogle Scholar
  11. 11.
    Zielińska K, Stankiewicz A, and Szczygieł I, J Colloid Interface Sci 377 (2012) 362.CrossRefGoogle Scholar
  12. 12.
    Gay P A, Limat J, Steinmann P A, and Pagetti J, Surf Coat Technol 202 (2007) 1167.CrossRefGoogle Scholar
  13. 13.
    Zhao Q, and Liu Y, Corros Sci 47 (2005) 2807.CrossRefGoogle Scholar
  14. 14.
    Allahkaram S, Nazari M H, Mamaghani S, and Zarebidaki A, Mater Des 32 (2011) 750.CrossRefGoogle Scholar
  15. 15.
    Zhang S, Han K, and Cheng L, Surf Coat Technol 202 (2008) 2807.CrossRefGoogle Scholar
  16. 16.
    Balaraju J N, Ezhil Selvi V, and Rajam K S, Mater Chem Phys 120 (2010) 546.CrossRefGoogle Scholar
  17. 17.
    Sarret M, Müller C, and Amell A, Surf Coat Technol 201 (2006) 389.CrossRefGoogle Scholar
  18. 18.
    Shibli S, Jabeera B, and Anupama R, Surf Coat Technol 200 (2006) 3903.CrossRefGoogle Scholar
  19. 19.
    Hamid Z A, Aal A A, Hassan H, and Shaaban A, Appl Surf Sci 256 (2010) 4166.CrossRefGoogle Scholar
  20. 20.
    Hong J, and He Y, Desalin 302 (2012) 71.CrossRefGoogle Scholar
  21. 21.
    Liang S, Xiao K, Mo Y, and Huang X, J Membr Sci 394 (2012) 184.CrossRefGoogle Scholar
  22. 22.
    Shibli S, Jabeera B, and Anupama R, Appl Surf Sci 253 (2006) 1644.CrossRefGoogle Scholar
  23. 23.
    Gu C, Lian J, and Jiang Z, Adv Eng Mater 7 (2005) 1032.CrossRefGoogle Scholar
  24. 24.
    Ebrahim-Ghajari M, Allahkaram S R, and Mahdavi S, Surf Eng 31 (2015) 251.CrossRefGoogle Scholar
  25. 25.
    Sajjadnejad M, Setoudeh N, Mozafari A, Isazadeh A, and Omidvar H, Trans Indian Inst Met 70 (2017) 1533.CrossRefGoogle Scholar
  26. 26.
    Mahdavi S, and Allahkaram S R, Surf Coat Technol 232 (2013) 198.CrossRefGoogle Scholar
  27. 27.
    Balaraju J, and Rajam K, Int J Electrochem Sci 2 (2007) 747.Google Scholar
  28. 28.
    Amell A, Muller C, and Sarret M, Surf Coat Technol 205 (2010) 356.CrossRefGoogle Scholar
  29. 29.
    Jiaqiang G, Lei L, Yating W, Bin S, and Wenbin H, Surf Coat Technol 200 (2006) 5836.CrossRefGoogle Scholar
  30. 30.
    Ger M D, and Hwang B J, Mater Chem Phys 76 (2002) 38.CrossRefGoogle Scholar
  31. 31.
    Wasekar N P, Madhavi Latha S, Ramakrishna M, Rao D S, and Sundararajan G, Mater Des 112 (2016) 140.CrossRefGoogle Scholar
  32. 32.
    Baskaran I, Sankara Narayanan T S N, and Stephen A, Mater Chem Phys 99 (2006) 117.CrossRefGoogle Scholar
  33. 33.
    Hentschel T, Isheim D, Kirchheim R, Müller F, and Kreye H, Acta Mater 48 (2000) 933.CrossRefGoogle Scholar
  34. 34.
    Flis J, and Duquette D, Corros 41 (1985) 700.CrossRefGoogle Scholar
  35. 35.
    Zhang S, Li Q, Yang X, Zhong X, Dai Y, and Luo F, Mater Charact 61 (2010) 269.CrossRefGoogle Scholar
  36. 36.
    Chen D, Jin N, Chen W, Wang L, Zhao S, and Luo D, Surf Coat Technol 254 (2014) 440.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2018

Authors and Affiliations

  • Ali Varmazyar
    • 1
  • Saeed Reza Allahkaram
    • 1
  • Soheil Mahdavi
    • 2
  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Research Center for Advanced Materials, Faculty of Materials EngineeringSahand University of TechnologyTabrizIran

Personalised recommendations