Skip to main content
Log in

Alkylimidazolium Bromides as Corrosion Inhibitors for Mild Steel in Acidic Medium

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Inhibition of mild steel corrosion in 1 M HCl solution by 1-alkyl-3-methylimidazolium bromides was investigated using electrochemical and weight loss methods. The studied ionic liquids showed appreciable inhibition efficiencies. Polarization measurements proved that the studied compounds were mixed-type inhibitors with predominantly anodic inhibition. The inhibition efficiency increased with the ionic liquid concentration and with the length of the alkyl chain. The values obtained from the polarization curves and weight loss measurements were in good agreement. The highest inhibition efficiency reached for the 1-octyl-3-methylimidazolium bromide was 94%. The Gibbs energy of adsorption was calculated by means of the Langmuir and Flory–Huggins isotherm and El-Awady thermodynamic-kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pieczyńska A, Ofiarska A, Borzyszkowska A F, Białk-Bielińska A, Stepnowski P, Stolte S, and Siedlecka E M, Sep Purif Technol 156 (2015) 522.

    Article  Google Scholar 

  2. Duan X, Ma J, Lian J, and Zheng W, Cryst Eng Comm 16 (2014) 2550.

    Article  Google Scholar 

  3. Hajipour A R, and Rafiee F, Organ Prep Proced Int 47 (2015) 249.

    Article  Google Scholar 

  4. Jindal R, and Sablok A, Curr Green Chem 2 (2015) 135.

    Article  Google Scholar 

  5. Sun P, and Armstrong D W, Anal Chim Acta 661 (2010) 1.

    Article  Google Scholar 

  6. Jampani C, Tavanandi H A, and Raghavarao K S M, Curr Biochem Eng 2 (2015) 135.

    Article  Google Scholar 

  7. MacFarlane D R, Forsyth M, Howlett P C, Kar M, Passerini S, Pringle J M, Ohno H, Watanabe M, Yan F, Zheng W, and Zhang S, Nat Rev Mater 1 (2016) 15005.

    Article  Google Scholar 

  8. Wang X, and Hao J, Sci Bull 61 (2016) 1281.

    Article  Google Scholar 

  9. Eshetu G G, Armand M, Scrosati B, and Passerini S, Angew Chem Int Ed Engl 53 (2014) 13342.

    Article  Google Scholar 

  10. Egorova K S, Gordeev E G, and Ananikov V P, Chem Rev 117 (2017) 7132.

    Article  Google Scholar 

  11. Diamanti M V, Velardi U V, Brenna A, Mele A, Pedeferri M P, and Ormellese M, Electrochim Acta 192 (2016) 414.

    Article  Google Scholar 

  12. El-Awady A A, Abd-E-Nabey B A, and Aziz S G, J Electrochem Soc 139 (1992) 2149.

    Article  Google Scholar 

  13. Zhang Q B, and Hua Y X, Electrochim Acta 54 (2009) 1881.

    Article  Google Scholar 

  14. Kowsari E, Arman S Y, Shahini M H, Zandid H, Ehsanie A, Naderif R, Hanza A P, and Mehdipour M, Corros Sci 112 (2016) 73.

    Article  Google Scholar 

  15. Ashassi-Sorkhabi H, Shabani B, Aligholipour B, and Seifzadeh D, Appl Surf Sci 252 (2006) 4039.

    Article  Google Scholar 

  16. Zhang D, Gao L, and Zhou G, Corros Sci 46 (2004) 3031.

    Article  Google Scholar 

  17. Zhang Q B, and Hua Y X Mater Chem Phys 119 (2010) 57.

    Article  Google Scholar 

  18. Zheng X, Zhang S, Li W, Gong M, and Yin L Corros Sci 95 (2015) 168.

    Article  Google Scholar 

  19. Yesudass S, Olasunkanmi L O, Bahadura I, Kabanda M M, Obot I B, and Ebenso E E, J Taiwan Inst Chem Eng 64 (2016) 252.

    Article  Google Scholar 

  20. Pourghasemi Hanza A, Naderib R, Kowsaric E, and Sayebanida M, Corros Sci 107 (2016) 96.

    Article  Google Scholar 

  21. Ghanbaria A, Attara M M, and Mahdavian M, Mater Chem Phys 124 (2010) 1205.

    Article  Google Scholar 

  22. Chong A L, Forsyth M, and MacFarlane D R, Electrochim Acta 159 (2015) 219.

    Article  Google Scholar 

  23. Zhang S G, Lei W, Xia M Z, and Wang F Y, J Mol Struct THEOCHEM 732 (2005) 173.

    Article  Google Scholar 

  24. Yesudass S, Adekunle A S, Olasunkanmi L O, Bahadur I, Baskar R, Kabanda M M, Obot I B, and Ebenso E E, J Mol Liq 211 (2015) 105.

    Article  Google Scholar 

  25. Mousavi M, Mohammadalizadeh M, and Khosravan A, Corros Sci 53 (2011) 3086.

    Article  Google Scholar 

  26. Keshavarz M H, Esmaeilpour K, Golikand A N, and Shirazi Z, Z Anorg Allg Chem 642 (2016) 906.

    Article  Google Scholar 

  27. Dzyuba S V, and Bartsch R A, Tetrahedron Lett 43 (2002) 4657.

    Article  Google Scholar 

  28. Ham B M, and Maham A Analytical Chemistry: A Chemist and Laboratory Technician’s Toolkit, 1 edn. Wiley, New York (2015).

    Google Scholar 

  29. Godlewska S, Jezierska J, Baranowska K, Augustin E, and Dołęga A, Polyhedron 65 (2013) 288.

    Article  Google Scholar 

  30. El Abd Rehim S S, Magdy Ibrahim A M, and Khalid K F, Mater Chem Phys 70 (2001) 268.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic in the “National Feasibility Program I”, Project LO1208 “TEWEP”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Langová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langová, Š., Pánek, P., Fojtášková, J. et al. Alkylimidazolium Bromides as Corrosion Inhibitors for Mild Steel in Acidic Medium. Trans Indian Inst Met 71, 1371–1378 (2018). https://doi.org/10.1007/s12666-017-1272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1272-x

Keywords

Navigation