Skip to main content
Log in

Development of Ultrahigh Strength TRIP Steel Containing High Volume Fraction of Martensite and Study of the Microstructure and Tensile Behavior

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A new transformation induced plasticity (TRIP) steel containing high volume fraction of martensite was produced by austempering heat treatment cycle. Microstructure and tensile properties of this TRIP steel were investigated and compared to those of a dual phase (DP) steel with high martensite volume fraction. Microstructural analysis showed a mixture of ferrite, bainite, retained austenite and about 25–30 vol% of martensite in the TRIP steel. As a result of the strain induced transformation of retained austenite to martensite, the TRIP steel showed a strength elongation balance of 86% higher than that for the DP steel. In comparison to the commercial TRIP780 steel, the current TRIP steel showed a 15% higher ultimate tensile strength value while maintaining the same level of ductility. TRIP steel also had a larger work hardening exponent than DP steel at all strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao Y, Karlsson B, and Ahlström J, Mater Sci Eng A 636 (2015) 124.

    Article  Google Scholar 

  2. Sharma R S, and Molian P, Mater Des 30 (2009) 4146.

    Article  Google Scholar 

  3. Kim J H, Kim D, Han H N, Barlat F, and Lee M G, Mater Sci Eng A 559 (2013) 222.

    Article  Google Scholar 

  4. Ashrafi H, Sadeghzade S, Emadi R, and Shamanian M, Steel Res Int 88 (2017) 1600213.

    Article  Google Scholar 

  5. Ashrafi H, Shamanian M, Emadi R, and Saeidi N, Mater Sci Eng A 680 (2017) 197.

    Article  Google Scholar 

  6. Lai Q, Bouaziz O, Gouné M, Brassart L, Verdier M, Parry G, Perlade A, Bréchet Y, and Pardoen T, Mater Sci Eng A 646 (2015) 322.

    Article  Google Scholar 

  7. Cai Z H, Ding H, Misra R D K, and Ying Z Y, Acta Mater 84 (2015) 229.

    Article  Google Scholar 

  8. Mohamadizadeh A, Zarei-Hanzaki A, Mehtonen S, Porter D, and Moallemi M, Metal Mater Trans A 47 (2016) 436.

    Article  Google Scholar 

  9. Curtze S, Kuokkala V-T, Hokka M, and Peura P, Mater Sci Eng A 507 (2009) 124.

    Article  Google Scholar 

  10. http://automotive.arcelormittal.com, TRIP(TRansformation Induced Plasticity) steels, ArcelorMittal, (2017).

  11. Luo H, and Dong H, Mater Sci Eng A 626 (2015) 207.

    Article  Google Scholar 

  12. Saeidi N, Raeissi M, Abdar M M, and Vaghei H, Mater Sci Eng A 702 (2017) 225.

    Article  Google Scholar 

  13. Wang C, Ding H, Zhang J, and Wu H, Acta Metall Sin (Engl Lett) 27 (2014) 457.

    Article  Google Scholar 

  14. Krizan D, and DeCooman B C, Metal Mater Trans A 45 (2014) 3481.

    Article  Google Scholar 

  15. Wang C, Ding H, Cai M, and Rolfe B, Mater Sci Eng A 610 (2014) 65.

    Article  Google Scholar 

  16. Sugimoto K, and Kumar-Srivastava A, Metallogr Microstruct Anal 4 (2015) 344.

    Article  Google Scholar 

  17. Standard Test Methods for Determining Average Grain Size, Annual Book of ASTM Standards, ASTM, (2004).

  18. de-la-Concepción V L, Lorusso H N, and Svoboda H G, Proc Mater Sci 8 (2015) 1047.

  19. Zhou L U, Zhang D, and Liu Y Z, Int J Miner Metal Mater 21 (2014) 755.

    Article  Google Scholar 

  20. Ashrafi H, Shamanian M, Emadi R, and Saeidi N, Trans Indian Inst Met 70 (2017) 1575.

    Article  Google Scholar 

  21. Committee H, Alloys Phase Diagrams, ASM, New York (2004).

    Google Scholar 

  22. Alibeyki M, Mirzadeh H, Najafi M, and Kalhor A, J Mater Eng Perform 26 (2017) 2683.

    Article  Google Scholar 

  23. Han Q, Asgari A, Hodgson P D, and Stanford N, Mater Sci Eng A 611 (2014) 90.

    Article  Google Scholar 

  24. Zhao Y, Yan Q, Chen L, and Yuan X, Acta Metall Sin (Engl Lett) 27 (2014) 389.

    Article  Google Scholar 

  25. Zackay V F, Parker E R, Fahr D, and Busch R, Trans Am Soc Met 60 (1967) 252.

    Google Scholar 

  26. Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, in: Annual Book of ASTM standards, ASTM, (2003).

  27. Li Z, and Wu D, ISIJ Int 46 (2006) 121.

    Article  Google Scholar 

  28. Zhao Z Z, Yin H X, Zhao A M, Gong Z Q, He J G, Tong T T, and Hu H J, Mater Sci Eng A 613 (2014) 8.

    Article  Google Scholar 

  29. Cullity B D, Elements of x-ray Diffraction, Addison-Wesley, Reading, MA (1978).

    Google Scholar 

  30. Ghassemi-Armaki H, Maaß R, Bhat S P, Sriram S, Greer J R, and Kumar K S, Acta Mater 62 (2014) 197.

    Article  Google Scholar 

  31. Ding W, Tang D, Jiang H, and Huang W, J Mater Eng Perform 20 (2011) 997.

    Article  Google Scholar 

  32. Dong H, Sun X, Cao W, Liu Z, Wang M, and Weng Y, in: Weng Y, Dong H, and Gan Y (eds) Advanced Steels: The Recent Scenario in Steel Science and Technology, Springer, London, (2011) 35.

    Chapter  Google Scholar 

  33. Reed-Hill R E, Cribb W R, and Monteiro S N, Metall Mater Trans B 4 (1973) 2665.

    Google Scholar 

  34. Deng Y G, Di H S, and Zhang J C, Acta Metall Sin (Engl Lett) 28 (2015) 1141.

    Article  Google Scholar 

  35. Das D, and Chattopadhyay P P, J Mater Sci 44 (2009) 2957.

    Article  Google Scholar 

  36. Jacques P J, Girault E, Mertens A, Verlinden B, Humbeeck J V, and Delannay F, ISIJ Int, 41 (2001) 1068.

    Article  Google Scholar 

  37. Chiang J, Lawrence B, Boyd J D, and Pilkey A K, Mater Sci Eng A 528 (2011) 4516.

    Article  Google Scholar 

  38. Movahed P, Kolahgar S, Marashi S P H, Pouranvari M, and Parvin N, Mater Sci Eng A 518 (2009) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hajiannia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiannia, I., Shamanian, M., Atapour, M. et al. Development of Ultrahigh Strength TRIP Steel Containing High Volume Fraction of Martensite and Study of the Microstructure and Tensile Behavior. Trans Indian Inst Met 71, 1363–1370 (2018). https://doi.org/10.1007/s12666-017-1271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1271-y

Keywords

Navigation