Skip to main content

Advertisement

Log in

Reaction Kinetics at the Fiber/Matrix Interface of SiCf/Ti–15–3 Composites

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the current research work, spark plasma consolidated beta-titanium alloy Ti–15V–3Cr–3Al–3Sn composites reinforced with SiC fibers (Sigma SM1240) were subjected to high temperatures (1173, 1223 and 1273 K) for different time periods (2.7, 11, 25 and 44 h) to investigate the kinetics of the chemical reactions at the fiber/matrix interface. Through microstructural studies and room temperature tensile tests, we have attempted to study the effect of the formed brittle reaction zone on the final mechanical properties of the composite. We have observed that, prior to the SiC fiber, the protective carbon coating reacts with the matrix and results in the formation of a reaction zone (predominantly TiC) at the fiber/matrix interface. The reaction zone propagates into the matrix with increase in time at the expense of the carbon coating, and finally ends with the onset of titanium silicide reaction. The reaction kinetics at the fiber/matrix interface was predominantly controlled by diffusion of carbon through the reaction zone and the activation energy for the same was calculated to be 149 kJ/mol. It was clear from the tensile test results that the mechanical properties of the composites do not earnestly decrease until the commencement of titanium silicide reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arvieu C, Manaud J P, Chadeyron P, and Quenisset J M, Compos Part A: Appl Sci Manuf 29 (1998) 1193.

    Article  Google Scholar 

  2. Zhou Y, and Yang Y, Acta Metall Sin 38 (2002) 461.

    Google Scholar 

  3. Yang Y Q, Zhu Y, Ma Z J, Chen Y, and Dudek H J, Acta Metall Sin 38 (2002) 466.

    Google Scholar 

  4. Yang Y, Ma Z, Lu X, Li J, Chen Y, and Ai Y, Rare Metal Mater Eng 35 (2006) 1516.

    Google Scholar 

  5. Yang Y Q, Lü X H, Luo X, Ma Z J, Li J K, Wen Q, and Chen Y, Mater Sci Forum 546 (2007) 1627.

    Article  Google Scholar 

  6. Luo X, Yang Y, Yu Y, Wang X, Huang B, and Chen Y, Mater Sci Eng A 550 (2012) 286.

    Article  Google Scholar 

  7. Gundel D B, and Wawner F E, Scr Metall et Mater 25 (1991) 437.

    Article  Google Scholar 

  8. Li Y, Zhang D, Shi N, and Yang R, J Mater Sci Technol 21 (2005) 903.

    Google Scholar 

  9. Fromentin J F, Debray K, Le Petitcorps Y, Martin E, and Quenisset J M, Compos Sci Technol 56 (1996) 767.

    Article  Google Scholar 

  10. Tong W, Ravichandran G, Christman, T, and Vreeland T, Acta Metall et Mater 4 (1995) C8/331.

    Google Scholar 

  11. Osborne D, Chandra N, and Ghonem H, Compos Part A: Appl Sci Manuf 32 (2001) 545.

    Article  Google Scholar 

  12. Zhang G X, Kang Q, Li G P, Shi N L, and Li D, Acta Metall Sin 39 (2003) 329.

    Google Scholar 

  13. Fukushima A, Fujiwara C, Kagawa Y, and Masuda C, Mater Sci Eng A 276 (2000) 243.

    Article  Google Scholar 

  14. Naka M, Feng J C, and Schuster J C, Metall Mater Trans A 28 (1997) 1385.

    Article  Google Scholar 

  15. Yan Z H U, Yan-qing Y, and Yao-yu W, Trans Nonferrous Metals Soc China 18 (2008) 733.

    Article  Google Scholar 

  16. Dybkov V I, J Mater Sci 21 (1986) 3085.

    Article  Google Scholar 

  17. Xun Y W, Tan M J, and Zhou J T, J Mater Process Technol 102 (2000) 215.

    Article  Google Scholar 

  18. Pankratz L B, Weller W W, and King E B, Bureau of Mines Report of Investigations Number 6861 (1966).

  19. Parker R H, An Introduction to Chemical Metallurgy, 2nd Edn, Pergamon Press, Oxford (1978), Chs 4, 6 and 8.

  20. Zhu Y, Rare Metal Mater Eng 31 (2002) 279.

    Google Scholar 

  21. Barin I, Thermochemical Data of Pure Substances, 3rd Edn. WILEY-VCH Verlag-GmbH, Pappelallee 3, D-69469 Weinheim, Federal Republic of Germany.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Muthuchamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuchamy, A., Janaki Ram, G.D. & Subramanya Sarma, V. Reaction Kinetics at the Fiber/Matrix Interface of SiCf/Ti–15–3 Composites. Trans Indian Inst Met 71, 941–949 (2018). https://doi.org/10.1007/s12666-017-1227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1227-2

Keywords

Navigation