Reaction Kinetics at the Fiber/Matrix Interface of SiCf/Ti–15–3 Composites

  • A. Muthuchamy
  • G. D. Janaki Ram
  • V. Subramanya Sarma
Technical Paper
  • 67 Downloads

Abstract

In the current research work, spark plasma consolidated beta-titanium alloy Ti–15V–3Cr–3Al–3Sn composites reinforced with SiC fibers (Sigma SM1240) were subjected to high temperatures (1173, 1223 and 1273 K) for different time periods (2.7, 11, 25 and 44 h) to investigate the kinetics of the chemical reactions at the fiber/matrix interface. Through microstructural studies and room temperature tensile tests, we have attempted to study the effect of the formed brittle reaction zone on the final mechanical properties of the composite. We have observed that, prior to the SiC fiber, the protective carbon coating reacts with the matrix and results in the formation of a reaction zone (predominantly TiC) at the fiber/matrix interface. The reaction zone propagates into the matrix with increase in time at the expense of the carbon coating, and finally ends with the onset of titanium silicide reaction. The reaction kinetics at the fiber/matrix interface was predominantly controlled by diffusion of carbon through the reaction zone and the activation energy for the same was calculated to be 149 kJ/mol. It was clear from the tensile test results that the mechanical properties of the composites do not earnestly decrease until the commencement of titanium silicide reaction.

Keywords

Reaction kinetics Titanium matrix composites Silicon carbide Beta titanium 

References

  1. 1.
    Arvieu C, Manaud J P, Chadeyron P, and Quenisset J M, Compos Part A: Appl Sci Manuf 29 (1998) 1193.CrossRefGoogle Scholar
  2. 2.
    Zhou Y, and Yang Y, Acta Metall Sin 38 (2002) 461.Google Scholar
  3. 3.
    Yang Y Q, Zhu Y, Ma Z J, Chen Y, and Dudek H J, Acta Metall Sin 38 (2002) 466.Google Scholar
  4. 4.
    Yang Y, Ma Z, Lu X, Li J, Chen Y, and Ai Y, Rare Metal Mater Eng 35 (2006) 1516.Google Scholar
  5. 5.
    Yang Y Q, Lü X H, Luo X, Ma Z J, Li J K, Wen Q, and Chen Y, Mater Sci Forum 546 (2007) 1627.CrossRefGoogle Scholar
  6. 6.
    Luo X, Yang Y, Yu Y, Wang X, Huang B, and Chen Y, Mater Sci Eng A 550 (2012) 286.CrossRefGoogle Scholar
  7. 7.
    Gundel D B, and Wawner F E, Scr Metall et Mater 25 (1991) 437.CrossRefGoogle Scholar
  8. 8.
    Li Y, Zhang D, Shi N, and Yang R, J Mater Sci Technol 21 (2005) 903.Google Scholar
  9. 9.
    Fromentin J F, Debray K, Le Petitcorps Y, Martin E, and Quenisset J M, Compos Sci Technol 56 (1996) 767.CrossRefGoogle Scholar
  10. 10.
    Tong W, Ravichandran G, Christman, T, and Vreeland T, Acta Metall et Mater 4 (1995) C8/331.Google Scholar
  11. 11.
    Osborne D, Chandra N, and Ghonem H, Compos Part A: Appl Sci Manuf 32 (2001) 545.CrossRefGoogle Scholar
  12. 12.
    Zhang G X, Kang Q, Li G P, Shi N L, and Li D, Acta Metall Sin 39 (2003) 329.Google Scholar
  13. 13.
    Fukushima A, Fujiwara C, Kagawa Y, and Masuda C, Mater Sci Eng A 276 (2000) 243.CrossRefGoogle Scholar
  14. 14.
    Naka M, Feng J C, and Schuster J C, Metall Mater Trans A 28 (1997) 1385.CrossRefGoogle Scholar
  15. 15.
    Yan Z H U, Yan-qing Y, and Yao-yu W, Trans Nonferrous Metals Soc China 18 (2008) 733.CrossRefGoogle Scholar
  16. 16.
    Dybkov V I, J Mater Sci 21 (1986) 3085.CrossRefGoogle Scholar
  17. 17.
    Xun Y W, Tan M J, and Zhou J T, J Mater Process Technol 102 (2000) 215.CrossRefGoogle Scholar
  18. 18.
    Pankratz L B, Weller W W, and King E B, Bureau of Mines Report of Investigations Number 6861 (1966).Google Scholar
  19. 19.
    Parker R H, An Introduction to Chemical Metallurgy, 2nd Edn, Pergamon Press, Oxford (1978), Chs 4, 6 and 8.Google Scholar
  20. 20.
    Zhu Y, Rare Metal Mater Eng 31 (2002) 279.Google Scholar
  21. 21.
    Barin I, Thermochemical Data of Pure Substances, 3rd Edn. WILEY-VCH Verlag-GmbH, Pappelallee 3, D-69469 Weinheim, Federal Republic of Germany.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • A. Muthuchamy
    • 1
  • G. D. Janaki Ram
    • 1
  • V. Subramanya Sarma
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations