Advertisement

Mechanical Properties of a Ni–Cr–Mo Steel Subjected to Room Temperature Carburizing Using Surface Mechano-Chemical Carburizing Treatment (SMCT)

  • Jogindra Nath Sahu
  • C. Sasikumar
Technical Paper
  • 44 Downloads

Abstract

Surface mechano-chemical carburizing treatment (SMCT) is a modified version of surface mechanical attrition treatment and it is one of the cutting-edge technologies for producing hard nano-crystalline surface in metallic materials. In the present study, a case carburized surface layer is achieved in 1.75 Ni–Cr–Mo steel at room temperature using SMCT. Activated charcoal powder is continuously fed during the process so as to achieve the carbon diffusion into the surface layer. The SMCT process has been carried out for different periods say 15, 30, 45 and 60 min respectively. The microstructure and surface chemical composition is investigated by using TEM and XRF analysis. The mechanical properties such as yield strength (YS), ultimate tensile strength (UTS), fracture toughness and surface hardness of SMCT samples have been investigated using universal testing machine, Plain strain fracture toughness test and Microvickers hardness test respectively. The surface carbon content has been found to increase linearly and grain size reduces continuously with processing time. A 60 min SMCT samples reveal 0.8% C and about 10 nm grains over the surface. The SMCT samples show significant improvement in mechanical properties. The surface hardness increases from 180 HV0.1 to ~ 878 HV0.1 by 60 min of treatment. About 55% increment in the YS and 30% increment in UTS is achieved by 60 min of SMCT. It is also interesting to note that the fracture toughness of the samples enhances from 24 to 47 MPa \( \sqrt m \) after 60 min of SMCT.

Keywords

Surface nano crystallization Mechanical attrition force Fracture toughness Activated charcoal and surface mechano chemical carburizing treatment 

References

  1. 1.
    Benjamin J S, Metal Mater Trans 1(1970) 2943.Google Scholar
  2. 2.
    Suranaryana C, Prog Mater Sci 46 (2001) 1.CrossRefGoogle Scholar
  3. 3.
    Schaffer G B, and Mccormick P G, Metal Mater Trans 21(1990)2789.CrossRefGoogle Scholar
  4. 4.
    Jangg G, Kuttner F, and Korb G, Aluminium 51 (1975) 64.Google Scholar
  5. 5.
    Radlinski A P, and Calka A, Mater Sci Eng 134 (1991) 1376.CrossRefGoogle Scholar
  6. 6.
    Calka A, Nikolov J J, and Williams J S, Mater Sci Forum 225–227 (1996) 527.CrossRefGoogle Scholar
  7. 7.
    El-Eskandarany M S, Metall Mater Trans 27 (1996) 2374.CrossRefGoogle Scholar
  8. 8.
    Tanaka T, Nasu S, Ishihara K N, Shingu P H, and Less J, Common Met 237 (1991) 237.CrossRefGoogle Scholar
  9. 9.
    Matteazzi P, Basset D, Miani F, and Lecaer G, Nanostruct Mater 2 (1993) 217.CrossRefGoogle Scholar
  10. 10.
    Tokumitsu K, Mater Sci Forum 235–238 (1997) 127.CrossRefGoogle Scholar
  11. 11.
    Basset D, Matteazzi P, and Miani F, Mater Sci Eng 168 (1993) 149.CrossRefGoogle Scholar
  12. 12.
    Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, and Lu K, Acta Mater 50 (2002) 4603.CrossRefGoogle Scholar
  13. 13.
    Lu K, and Lu J J, Mater Sci Technol 15 (1999) 193.CrossRefGoogle Scholar
  14. 14.
    Zhang H W, Hei Z K, Liu G, Lu J, and Lu K, Acta Mater 51 (2003) 1871.CrossRefGoogle Scholar
  15. 15.
    Guo S, Wang Z B, Wang L M, and Lu K, Surf Coat Technol 258 (2014) 329.CrossRefGoogle Scholar
  16. 16.
    Liu W, Zhang C, Yanga Z, and Xia Z, Appl Surf Sci 292 (2014) 556.CrossRefGoogle Scholar
  17. 17.
    Révész A, and Takacs L, J Alloys Compd 441 (2007) 111.CrossRefGoogle Scholar
  18. 18.
    Umemoto M, Todaka Y, and Tsuchiya K, Mater Trans 44 (2003) 1488.CrossRefGoogle Scholar
  19. 19.
    Huang L, Lu J, and Troyon M, Surf Coat Technol 201 (2006) 208.CrossRefGoogle Scholar
  20. 20.
    Parrish G, Int Novelty 86 (1999) 343.Google Scholar
  21. 21.
    Hosford W F, Mechanical Behavior of Materials, Cambridge University Press, New York (2005) p 194.CrossRefGoogle Scholar
  22. 22.
    American Society for Testing and Materials, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, E 39990, ASTM International (2003).Google Scholar
  23. 23.
    Meyers M A, Mishra A, and Benson D J, Prog Mater Sci 51 (2006) 427.CrossRefGoogle Scholar
  24. 24.
    Liu Y, Zhoua Y, Shen T, and Hui D, J Mater Res 26 (2011) 1734.CrossRefGoogle Scholar
  25. 25.
    James C M, and Li (ed.), Mechanical Properties of Nanocrystalline Materials, Pan Stanford, Florida, (2011) p 245.Google Scholar
  26. 26.
    Ritchiet R O, Francis B, and Server W L, Metal Mater Trans 7 (1976) 831.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Department of Materials and Metallurgical EngineeringMANITBhopalIndia

Personalised recommendations