Skip to main content

Advertisement

Log in

Mechanical Properties of a Ni–Cr–Mo Steel Subjected to Room Temperature Carburizing Using Surface Mechano-Chemical Carburizing Treatment (SMCT)

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Surface mechano-chemical carburizing treatment (SMCT) is a modified version of surface mechanical attrition treatment and it is one of the cutting-edge technologies for producing hard nano-crystalline surface in metallic materials. In the present study, a case carburized surface layer is achieved in 1.75 Ni–Cr–Mo steel at room temperature using SMCT. Activated charcoal powder is continuously fed during the process so as to achieve the carbon diffusion into the surface layer. The SMCT process has been carried out for different periods say 15, 30, 45 and 60 min respectively. The microstructure and surface chemical composition is investigated by using TEM and XRF analysis. The mechanical properties such as yield strength (YS), ultimate tensile strength (UTS), fracture toughness and surface hardness of SMCT samples have been investigated using universal testing machine, Plain strain fracture toughness test and Microvickers hardness test respectively. The surface carbon content has been found to increase linearly and grain size reduces continuously with processing time. A 60 min SMCT samples reveal 0.8% C and about 10 nm grains over the surface. The SMCT samples show significant improvement in mechanical properties. The surface hardness increases from 180 HV0.1 to ~ 878 HV0.1 by 60 min of treatment. About 55% increment in the YS and 30% increment in UTS is achieved by 60 min of SMCT. It is also interesting to note that the fracture toughness of the samples enhances from 24 to 47 MPa \( \sqrt m \) after 60 min of SMCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benjamin J S, Metal Mater Trans 1(1970) 2943.

    Google Scholar 

  2. Suranaryana C, Prog Mater Sci 46 (2001) 1.

    Article  Google Scholar 

  3. Schaffer G B, and Mccormick P G, Metal Mater Trans 21(1990)2789.

    Article  Google Scholar 

  4. Jangg G, Kuttner F, and Korb G, Aluminium 51 (1975) 64.

    Google Scholar 

  5. Radlinski A P, and Calka A, Mater Sci Eng 134 (1991) 1376.

    Article  Google Scholar 

  6. Calka A, Nikolov J J, and Williams J S, Mater Sci Forum 225–227 (1996) 527.

    Article  Google Scholar 

  7. El-Eskandarany M S, Metall Mater Trans 27 (1996) 2374.

    Article  Google Scholar 

  8. Tanaka T, Nasu S, Ishihara K N, Shingu P H, and Less J, Common Met 237 (1991) 237.

    Article  Google Scholar 

  9. Matteazzi P, Basset D, Miani F, and Lecaer G, Nanostruct Mater 2 (1993) 217.

    Article  Google Scholar 

  10. Tokumitsu K, Mater Sci Forum 235–238 (1997) 127.

    Article  Google Scholar 

  11. Basset D, Matteazzi P, and Miani F, Mater Sci Eng 168 (1993) 149.

    Article  Google Scholar 

  12. Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, and Lu K, Acta Mater 50 (2002) 4603.

    Article  Google Scholar 

  13. Lu K, and Lu J J, Mater Sci Technol 15 (1999) 193.

    Article  Google Scholar 

  14. Zhang H W, Hei Z K, Liu G, Lu J, and Lu K, Acta Mater 51 (2003) 1871.

    Article  Google Scholar 

  15. Guo S, Wang Z B, Wang L M, and Lu K, Surf Coat Technol 258 (2014) 329.

    Article  Google Scholar 

  16. Liu W, Zhang C, Yanga Z, and Xia Z, Appl Surf Sci 292 (2014) 556.

    Article  Google Scholar 

  17. Révész A, and Takacs L, J Alloys Compd 441 (2007) 111.

    Article  Google Scholar 

  18. Umemoto M, Todaka Y, and Tsuchiya K, Mater Trans 44 (2003) 1488.

    Article  Google Scholar 

  19. Huang L, Lu J, and Troyon M, Surf Coat Technol 201 (2006) 208.

    Article  Google Scholar 

  20. Parrish G, Int Novelty 86 (1999) 343.

    Google Scholar 

  21. Hosford W F, Mechanical Behavior of Materials, Cambridge University Press, New York (2005) p 194.

    Book  Google Scholar 

  22. American Society for Testing and Materials, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, E 39990, ASTM International (2003).

  23. Meyers M A, Mishra A, and Benson D J, Prog Mater Sci 51 (2006) 427.

    Article  Google Scholar 

  24. Liu Y, Zhoua Y, Shen T, and Hui D, J Mater Res 26 (2011) 1734.

    Article  Google Scholar 

  25. James C M, and Li (ed.), Mechanical Properties of Nanocrystalline Materials, Pan Stanford, Florida, (2011) p 245.

  26. Ritchiet R O, Francis B, and Server W L, Metal Mater Trans 7 (1976) 831.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jogindra Nath Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, J.N., Sasikumar, C. Mechanical Properties of a Ni–Cr–Mo Steel Subjected to Room Temperature Carburizing Using Surface Mechano-Chemical Carburizing Treatment (SMCT). Trans Indian Inst Met 71, 915–921 (2018). https://doi.org/10.1007/s12666-017-1223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1223-6

Keywords

Navigation