Investigation of Microstructure, Mechanical and Wear Behaviour of B4C Particulate Reinforced Magnesium Matrix Composites by Powder Metallurgy

  • Fatih Aydin
  • Yavuz Sun
  • Hayrettin Ahlatci
  • Yunus Turen
Technical Paper


In the present study, magnesium and magnesium matrix composites reinforced with 10, 20 and 30 wt% B4C particulates were fabricated by powder metallurgy using hot pressing technique. The microstructure, mechanical properties and wear behaviour of the samples were investigated. Microstructure characterization showed generally uniform distribution of B4C particulates. XRD investigations revealed the presence of Mg, B4C and MgO phases. The mechanical properties of the investigated samples were determined by hardness and compression tests. Hardness and compressive yield strength significantly increased with increasing B4C content. The reciprocating wear tests was applied under loads of 5, 10 and 20 N. Wear volume losses decreased with increasing B4C content. Abrasive and oxidative wear mechanisms were observed.


B4Powder metallurgy Hot pressing Microstructure Wear behaviour Mechanical properties 



This work was supported by Karabuk University Coordinatorship of Research Projects (Project Number: KBU-BAP No.16/1-DR-077).


  1. 1.
    Gupta M, and Sharon N M L, Magnes Magnesium alloys and Magnesium Composites, John Wiley & Sons Inc. Publication, New Jersey (2011), p 103.CrossRefGoogle Scholar
  2. 2.
    Dey A, and Pandey K M, Rev Adv Mater Sci 42 (2015) 58.Google Scholar
  3. 3.
    Mahajan G V, and Aher V S, Int. J Sci Res Publ 2 (2012) 11.Google Scholar
  4. 4.
    Lee K B, Kım Y S, and Kwon H, Metall Mater Trans A 29 (1998) 3087.CrossRefGoogle Scholar
  5. 5.
    Kevorkijan V, and Škapin S D, Mater Manuf Processes 24 (2009) 1337.CrossRefGoogle Scholar
  6. 6.
    Ghasali E, Alizadeh M, Niazmand M, and Ebadzadeh T, J Alloys Compd 697 (2017) 200.CrossRefGoogle Scholar
  7. 7.
    Ye H Z, and Lıu X Y, J Mater Sci 39 (2004) 6153.CrossRefGoogle Scholar
  8. 8.
    Wang H Y, Jiang Q C, Wang Y, Ma B X, and Zhao F, Mater Lett 58 (2004) 3509.CrossRefGoogle Scholar
  9. 9.
    Chua B W, Lu L, and Lai M O, Compos Struct 47 (1999) 595.CrossRefGoogle Scholar
  10. 10.
    Garces G, Perez P, and Adeva P Scripta Mater 52 (2005) 615.CrossRefGoogle Scholar
  11. 11.
    Ferkel H, and Mordike B L, Mater Sci Eng A 298 (2001) 193.CrossRefGoogle Scholar
  12. 12.
    Hassan S F, and Gupta M, Metall Mater Trans A 36 (2005) 2253.CrossRefGoogle Scholar
  13. 13.
    Wong W L E, Karthik S, and Gupta M, Mater Sci Technol 21 (2005) 1063.CrossRefGoogle Scholar
  14. 14.
    Contreras A, Lopez V H, and Bedolla E, Scripta Mater 51 (2004) 249.CrossRefGoogle Scholar
  15. 15.
    Li Q, and Tian B, J Mater Res 28 (2013) 1877.CrossRefGoogle Scholar
  16. 16.
    Domnich V, Reynaud S, Haber R A, and Chhowalla M, J Am Ceram Soc 94 (2011) 3605.CrossRefGoogle Scholar
  17. 17.
    Kevorkijan V, and Škapin S D, MJoM 15 (2009) 3.Google Scholar
  18. 18.
    Yao Y, and Chen L, J Mater Sci Technol 30 (2014) 661.CrossRefGoogle Scholar
  19. 19.
    Jiang Q C, Wang H Y, Ma B X, Wang Y, and Zhao F, J Alloys Compd 386 (2005) 177.CrossRefGoogle Scholar
  20. 20.
    Spierings A B, Schneider M, and Eggenberger R, Rapid Prototyp J 17 (2011) 380.CrossRefGoogle Scholar
  21. 21.
    Feeman T G, Int J Math Edu Sci Technol 40 (2009) 1118.CrossRefGoogle Scholar
  22. 22.
    Yar A A, Montazerian M, Abdizadeh H, and Baharvandi H R, J Alloys Compd 484 (2009) 400.CrossRefGoogle Scholar
  23. 23.
    Nguyen Q B, Quader I, Nai, M L S, Seetharaman S, Leong E W W, Almajid A, and Gupta M, Powder Metall 59 (2016) 209.CrossRefGoogle Scholar
  24. 24.
    Narayanasamy P and Selvakuma R N, Trans Nonferrous Met Soc China 27 (2017) 312.CrossRefGoogle Scholar
  25. 25.
    Thakur S K, Srivatsan T S, and Gupta M, Mater Sci Eng A 466 (2007) 32.CrossRefGoogle Scholar
  26. 26.
    Rashad M, Pan F, Tang A, Asif M, and Aamir M, J Alloys Compd 603 (2014) 111.CrossRefGoogle Scholar
  27. 27.
    Xi Y L, Chai D L, Zhang W X, and Zhou J E, Mater Lett 59 (2005) 1831.CrossRefGoogle Scholar
  28. 28.
    Liu J, Zhao K, Zhang M, Wang Y, and An L, Mater Lett 143 (2015) 287.CrossRefGoogle Scholar
  29. 29.
    Bagchesara M A, and Abdizadeh H, J Mech Sci Technol 26 (2012) 367.CrossRefGoogle Scholar
  30. 30.
    Deng K K, Wu K, Wu Y W, Nie K B, and Zheng M Y, J Alloys Compd 504 (2010) 542.CrossRefGoogle Scholar
  31. 31.
    Guleryuz L F, Ozan S, Uzunsoy D, and Ipek R, Powder Metall Met Ceram 51 (2012) 456.CrossRefGoogle Scholar
  32. 32.
    Sıngh A, and Bala N, Metall Mater Trans A, 48 (2017) 5031.CrossRefGoogle Scholar
  33. 33.
    Habibi M K, Hamouda A S, and Gupta M, J Alloys Compd 550 (2013) 83.CrossRefGoogle Scholar
  34. 34.
    Lu L, Thong K K, and Gupta M, Compos Sci Technol 63 (2003) 627.CrossRefGoogle Scholar
  35. 35.
    Muley S V, Singh S P, Sinha P, Bhingole P P, and Chaudhari G P, Mater Des 53 (2014) 475.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Fatih Aydin
    • 1
  • Yavuz Sun
    • 1
  • Hayrettin Ahlatci
    • 1
  • Yunus Turen
    • 1
  1. 1.Metallurgy and Materials Engineering DepartmentKarabuk UniversityKarabukTurkey

Personalised recommendations