Characterization and Reduction Roasting Studies of an Iron Rich Manganese Ore

  • Swagat S. Rath
  • Sunil Kumar Tripathy
  • Danda S. Rao
  • Surendra K. Biswal
Technical Paper


The article presents the reduction roasting followed by low intensity magnetic separation studies of a low grade Mn ore assaying 27.7% Mn and 26.1% Fe in order to obtain a Mn rich non-magnetic concentrate. The reflected light microscopic studies followed by the liberation studies of the as-received sample using quantitative mineralogical evaluation by scanning electron microscope suggested a poor liberation pattern of the constituent Mn and Fe minerals owing to a complex association of the different phases present. The reduction roasting studies carried out while varying different process parameters such as ore particle size, temperature, reductant content and residence time ended up with products containing 45–48% Mn with a Mn/Fe ratio of 5–6 at a yield of ~ 60% with the optimum level of conditions such as temperature: 800–850 °C, time: 90–120 min and charcoal: 10–12%. The scanning electron microscopy–energy dispersive X-ray spectroscopy studies of the roasted product reported manganite as the major Mn bearing phase while magnetite was found to be the major iron bearing phase.


Reduction roasting QEMSCAN Mn to Fe ratio SEM–EDS Reflected light microscopy 



The authors are thankful to the Director, CSIR-IMMT Bhubaneswar for his kind consent to publish this paper and to Tata Steel for funding this research.


  1. 1.
    Indian Mineral Year Book, Indian Bureau of Mines, Ministry of steel and mines, Nagpur (2003) p 55.1–55.21.Google Scholar
  2. 2.
    Manganese ore vision 2020 and beyond, Indian Bureau of Mines, Nagpur, India (2014).Google Scholar
  3. 3.
    Xin B, Chen B, Duan N, and Zhou C, J Bior Tech 102 (2011) 1683.CrossRefGoogle Scholar
  4. 4.
    Mineral Facts & Problems No-4, Monograph on Manganese Ore, Indian Bureau of Mines, Ministry of steel and mines, Nagpur, (1974) p 271–276.Google Scholar
  5. 5.
    Mani K S, and Subrahmanyam D, Proc Indian Natn Sci Acad, 50A (1984) 509.Google Scholar
  6. 6.
    Naik P K, Reddy P S R, and Misra V N, J Min Metall, 41A (2005) 11.Google Scholar
  7. 7.
    Mishra PP, Mohapatra B K., and Mahanta K, J Miner Mater Charact Eng, 8 (2009) 47.Google Scholar
  8. 8.
    Sharma T, Int J Miner Process, 35 (1992)191.CrossRefGoogle Scholar
  9. 9.
    Dash N, Mohapatra B K, and Rao D S, World Metall. Erzmetall, 63 (2010) 5.Google Scholar
  10. 10.
    Singh V, Ghosh T K, Ramamurthy Y, and Tathavadkar V, Int J Miner Process, 99 (2011) 84.CrossRefGoogle Scholar
  11. 11.
    Chanturiya E L, Bashlykova T V, Potkonen N I, and Makavetskas A R, Poor manganese ore dressing on the basis of mineralogical–technological studies, in Proceedings of the XXI International Mineral Processing Congress, Rome, 13 (2000) p C2–1.Google Scholar
  12. 12.
    Hosseini M R, Bahrami A, and Pazouki M, Influence of shaking table parameters on manganese grade and recovery, Proceedings of the XXIV International Mineral Processing Congress (IMPC), Beijing, (2008) p 783.Google Scholar
  13. 13.
    Malayoglu U, Asia J Chem, 22 (2010) 3292.Google Scholar
  14. 14.
    Tripathy S K, Mallick M K, Singh V, and Murthy Y R, Powder Technol 239 (2013) 284.CrossRefGoogle Scholar
  15. 15.
    Oliazadeh M, Noaparast M, Dehghan R, Beneficiation of low grade fine manganese ores, Proceeding of the XXIII International Mineral Processing Congress, Istanbul (2006) p 347.Google Scholar
  16. 16.
    Singh V, Tathavadkar V, Denys M B, Venugopal R, Miner Eng, 32 (2012) 8.CrossRefGoogle Scholar
  17. 17.
    Abeidu A M, Trans JIM, 14 (1973) 45.CrossRefGoogle Scholar
  18. 18.
    Dendyuk T V, Powder Technol 71 (1992) 47.CrossRefGoogle Scholar
  19. 19.
    Zhou F, Chen T, Yan C, Liang H, Colloids Surf A Physicochem Eng Asp, 466 (2015) 1–9.CrossRefGoogle Scholar
  20. 20.
    Rao G V, Acharya B C, Murty B V R, Mohanty J N, Swamy Y V, and Tripathy A K, Magn Electr Sep 9 (1998a) 109–123.Google Scholar
  21. 21.
    Rao G V, Mohapatra B K, and Tripathy A K, India, Magn Electr Sep, 92 (1998b) 69.Google Scholar
  22. 22.
    Kanungo S B, Mishra S K, and Biswal D, Miner Metall Process, 17(4) (2000a) 269.Google Scholar
  23. 23.
    Kanungo S B, Mishra S K, and Biswal D, Miner Metall Process, 17 (2000b) 181.Google Scholar
  24. 24.
    Grieco G, Kastrati S, and Pedrotti M, Miner Process Extr Metall Rev, 35 (2014) 257.CrossRefGoogle Scholar
  25. 25.
    Tripathy S K, Banerjee P K, and Suresh, N., Int J Miner Metall Mater 22 (2015) 661.CrossRefGoogle Scholar
  26. 26.
    Swamy Y V, Bhoi B, Prakash S, and Ray H S, Miner Metall Process, 15 (1998) 34.Google Scholar
  27. 27.
    Kivinen V, Krogerus H, and Daavittila J, Upgradation of Mn:Fe ratio of low grade manganese ore for ferromanganese production, Proceedings of XII International Ferro Alloys Congress. Helsinki (2010) p 467.Google Scholar
  28. 28.
    Acharya B C, Rao D S, and Sahoo R K, Miner Deposit, 32 (1997) 79–93.CrossRefGoogle Scholar
  29. 29.
    Acharya B C, Rao D S, Sahoo R K, and Dash B, Indian J Geol, 66 (1994) 15.Google Scholar
  30. 30.
    Kuo K, Persson L E, J Iron Steel Inst, 178 (1954) 39.Google Scholar
  31. 31.
    Akdogan G, and Eric R H, Miner Eng 7 (1994) 633–645.CrossRefGoogle Scholar
  32. 32.
    Ren S J, Industrial Minerals Resource Exploitation and Processing Handbook. Wuhan Industry University Press, Wuhan, (1993) p 18–37.Google Scholar
  33. 33.
    Momade F W Y, and Momade Z S G, Hydrometallurgy 54 (1999) 25.CrossRefGoogle Scholar
  34. 34.
    Gao, Y., Prereduction and Magnetic Separation of Low Grade Manganese Ore, M.S. Thesis, University of Utah (2011).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Swagat S. Rath
    • 1
  • Sunil Kumar Tripathy
    • 2
  • Danda S. Rao
    • 1
  • Surendra K. Biswal
    • 1
  1. 1.CSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia
  2. 2.Tata Steel LimitedJamshedpurIndia

Personalised recommendations