Investigation of Microstructure Properties and Quantitative Metallography by Different Etchants in the Service-Exposed Nickel-Based Superalloy Turbine Blade

  • Amirhossein Khodabakhshi
  • Alireza Mashreghi
  • Yazdan Shajari
  • Seyed Hossein Razavi
Technical Paper
  • 49 Downloads

Abstract

In this study, the effect of etchant type and etching conditions on the root and airfoil microstructure of a service-exposed IN738 turbine blade has been investigated. The microstructure of superalloy components used at high temperatures, in addition to the usual microstructural changes, experiences deterioration in micrometer dimensions. In order to investigate these changes, electrochemical etching was performed on the samples with the chemical solution including 80% phosphoric acid, solution containing Cr2O3 and 55% glycerol. Chemical etching was performed with marble and etchant solution containing 60% glycerol. The results in terms of specifying the deterioration effects on microstructure of the blade applied at high temperature, the amount of γ′ phase and the best etchant were investigated. Among the solutions used for chemical etching, the solution containing 10 ml HNO3, 50 ml HCl and 60 ml glycerol was appropriate for detection of segregations and dendrites, and among the electrochemical etching solutions, the Cr2O3 solution was found suitable for specifying γ′ precipitates’ morphology by scanning electron microscopy. In this research, the results of the quantitative analysis of the images provided by these etchants were also investigated.

Keywords

Nickel-based superalloy Microstructure Chemical etching Electro-etch 

References

  1. 1.
    Ross E W, and Sims C T, Superalloy II, John wiley & Sons, New York (1987) p 97.Google Scholar
  2. 2.
    Steiner R, Metals Handbook, vol. 1, ASM International, MaterialsPark, OH (1990), p 950.Google Scholar
  3. 3.
    Briant C L, Mater Manuf Process 15 (2000) 155.CrossRefGoogle Scholar
  4. 4.
    Schafrik R, and Sprague R, Adv Aater Process 162 (2004) 27.Google Scholar
  5. 5.
    Liburdi J, Lowden P, Nagy D, De Priamus T R, and Shaw S, ASME Turbo Expo 2009: Power for Land, Sea, and Air, p 819.Google Scholar
  6. 6.
    Walston W S, Schaeffer J C, and Murphy W H, Eight Inernashnal Symposium of Superalloys, The Minerals, Metals & Materials Society, Pittsburgh (1996) p 9.Google Scholar
  7. 7.
    Sims C T, and Hagel C W, The Superalloys-Vital High Temperature Gas Turbine Materials for Aerospace and Industrial Power, John Wiley & Sons, New York (1972).Google Scholar
  8. 8.
    Ross E W, and Sims C T, Superalloy I, John wiley & Sons, New York (1972).Google Scholar
  9. 9.
    Moshtaghin R S, Asgari S, Mater Des 24 (2003) 325.CrossRefGoogle Scholar
  10. 10.
    Jayanth C S, Nash P, Mater Sci Technol 6 (1990) 405.CrossRefGoogle Scholar
  11. 11.
    Ray A K, Singh S R, Swaminathan J, Roy P K, Tiwari Y N, Bose S C, and Ghosh R N, Mater Sci Eng A 419 (2006) 225.CrossRefGoogle Scholar
  12. 12.
    Hosseini S S, Nategh S, and Ekrami A A, J Alloys Compd 512 (2012) 340.CrossRefGoogle Scholar
  13. 13.
    Chellman D J, and Ardell A J, Acta Metall 22 (1974) 577.CrossRefGoogle Scholar
  14. 14.
    Yang J, Zheng Q, Ji M, Sun X, and Hu Z, Mater Sci Eng 528 (2011) 1534.CrossRefGoogle Scholar
  15. 15.
    Jafari A, Abbasi S M, Rahimi A, Morakabati M, and Seifollahi M, Assoc Metall Eng Serb 21 (2015) 167.Google Scholar
  16. 16.
    Liu L, Sommer F, and Fu H Z, Scripte Metallurgica et Materialia 30 (1994) 587.CrossRefGoogle Scholar
  17. 17.
    Donachie M J, and Donachie S J, Superalloys–A Technical Guide, ASM International, Materials Park, OH (2002).Google Scholar
  18. 18.
    Zhao S, Xie X, Smith G D, and Patel S J, Mater Lett 58 (2004) 1784.CrossRefGoogle Scholar
  19. 19.
    James A, Mater Sci Technol 17 (2001) 481.CrossRefGoogle Scholar
  20. 20.
    Mazur Z, Luna-Ramirez A, and Juárez-Islas J A, Campos-Amezcua A, Eng Fail Anal 12 (2005) 474.CrossRefGoogle Scholar
  21. 21.
    González M A, Martínez D I, Pérez A, and Garza A, MRS Proc 1275 (2010) S3.CrossRefGoogle Scholar
  22. 22.
    Danis Y, Arvieu C, Lacoste E, Larrouy T, and Quenisset J M, Mater Des 31 (2010) 402.CrossRefGoogle Scholar
  23. 23.
    Davis J R, ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, ASM International Handbook Committee, Ohio (2000).Google Scholar
  24. 24.
    Salehi R, Samadi A, and Savadkoohi M, Metallogr Microstruct Anal 1 (2012) 290.CrossRefGoogle Scholar
  25. 25.
    Brown J A, Freer R, and Rowley A T, J Eng Gas Turbines Power 123 (2001) 57.CrossRefGoogle Scholar
  26. 26.
    Sugui T, Jun X, Xiaoming Z, Benjiang Q, Jianwei L, Lili Y, and Wuxiang W, Mater Sci Eng A 528 (2011) 2076.CrossRefGoogle Scholar
  27. 27.
    Carter T J, Eng Fail Anal 12 (2005) 237.CrossRefGoogle Scholar
  28. 28.
    R.A. Stevens, P.E.J. Flewitt, Mater. Sci. Eng. 37 (1979) 237-247.CrossRefGoogle Scholar
  29. 29.
    Stevens R A, and Flewitt P E J, Mater Sci Eng 50 (1981) 271.CrossRefGoogle Scholar
  30. 30.
    Lvova E, and Norsworthy D, J Mater Eng Perform 10 (2001) 299.CrossRefGoogle Scholar
  31. 31.
    Lvova E, J Mater Eng Perform 16 (2007) 254.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Amirhossein Khodabakhshi
    • 1
  • Alireza Mashreghi
    • 1
  • Yazdan Shajari
    • 2
  • Seyed Hossein Razavi
    • 3
  1. 1.Department of Mining and Metallurgical EngineeringYazd UniversityYazdIran
  2. 2.Department of Materials EngineeringIslamic Azad UniversityKarajIran
  3. 3.School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations