Advertisement

Electrochemical Studies and XPS Analysis of the Surface of Zirconium-702 in Concentrated Nitric Acid With and Without Fluoride Ions

  • J. Jayaraj
  • D. Nanda Gopala Krishna
  • C. Mallika
  • U. Kamachi Mudali
Technical Paper

Abstract

Zirconium exhibited pseudo-passive behavior in fluorinated nitric acid (11.5 M HNO3 + 0.05 M NaF) as the current density measured from the electrochemical studies was several orders higher than the value in fluoride free nitric acid. Impedance studies on zirconium sample exposed in 11.5 M HNO3 for 240 h confirmed the formation of the passive film with high polarization resistance value and the calculated thickness of the film based on the capacitance value was about ~4.5 nm. On the other hand, in fluorinated nitric acid, the charge transfer resistance value associated with the zirconium dissolution process was dominant when compared to that of the film formation. Results of X-ray photoelectron spectroscopic investigations upheld the presence of ZrOF2 and ZrF4 and indicated that the protective oxide layer growth was restricted by the presence of fluoride ions.

Keywords

Zirconium Nitric acid Fluoride Corrosion EIS XPS 

References

  1. 1.
    Baldev Raj and Kamachi Mudali U, Prog Nucl Energ 48 (2006) 283.CrossRefGoogle Scholar
  2. 2.
    Bernard C, Mourox J P, Decours J, Demay R and Simonnet J, Proc Int Conf on Fuel Reprocessing and Waste Management-RECOD 91, Sendai, Japan (1991) p 570.Google Scholar
  3. 3.
    Jayaraj J, Thyagarajan K, Mallika C and Kamachi Mudali U, Nucl Technol 191 (2015) 58.CrossRefGoogle Scholar
  4. 4.
    Jayaraj J, Krishnaveni P, Nanda Gopala Krishna D, Mallika C and Kamachi Mudali U, J Nucl Mater 473 (2016) 157.CrossRefGoogle Scholar
  5. 5.
    Smith T and Hill G R, J Electrochem Soc 105 (1958) 117.CrossRefGoogle Scholar
  6. 6.
    James W J, Custead W G and Straumanis M E, J Phys Chem 64 (1960) 286.CrossRefGoogle Scholar
  7. 7.
    Straumanis M E, James W J and Custead W C, J Electrochem Soc 107 (1960) 502.CrossRefGoogle Scholar
  8. 8.
    Van der Wall E M and Whitener E M, Ind Eng Chem 51 (1959) 51.CrossRefGoogle Scholar
  9. 9.
    Goncalves Z and Munzel H, J Nucl Mater 170 (1990) 261.CrossRefGoogle Scholar
  10. 10.
    Klein R, Corrosion 53 (1997) 327.CrossRefGoogle Scholar
  11. 11.
    Sutter E M M, Hlawka F and Cornet A, Corrosion 46 (1990) 537.CrossRefGoogle Scholar
  12. 12.
    Meyer R E, J Electrochem Soc 112 (1965) 684.CrossRefGoogle Scholar
  13. 13.
    Prono J, Jaszay T, Caprani A and Frayret J P, J Appl Electrochem 25 (1995) 1031.Google Scholar
  14. 14.
    Fauvet P, Balbaud F, Robin R, Taran Q T, Mugnier A and Espinoux D, J Nucl Mater 375 (2008) 52.CrossRefGoogle Scholar
  15. 15.
    Fontana M G, Corrosion Engineering, Tata McGraw-Hill Education Private Limited, Delhi (2005).Google Scholar
  16. 16.
    Ravi Shankar A and Kamachi Mudali U, Trans Indian Inst Metals 62 (2009) 545.CrossRefGoogle Scholar
  17. 17.
    Kajimura H and Nagano H, Corros Sci 31 (1990) 261.CrossRefGoogle Scholar
  18. 18.
    Lohrengel M M, Mater Sci Eng R 11 (1993) 243.CrossRefGoogle Scholar
  19. 19.
    Kelly R G, Scully J R, Shoesmith D W, Buchheit R G, Electrochemical Techniques in Corrosion Science and Engineering, Marcel Dekker Inc., New York (2003).Google Scholar
  20. 20.
    Brug G J, Van Den Eeden A L G, Rehbach M S and Sluyters J H, J Electroanal Chem 176 (1984) 275.CrossRefGoogle Scholar
  21. 21.
    Torres P C, Mesquita T J, Devos O, Tribollet B, Roche V and Nogueira R P, Electrochim Acta 72 (2012) 172.CrossRefGoogle Scholar
  22. 22.
    Franceschetti D R and Macdonald J R, J Electroanal Chem 82 (1977) 271.CrossRefGoogle Scholar
  23. 23.
    Torres P C, Keddam M and Nogueira R P, Electrochim Acta 54 (2008) 518.CrossRefGoogle Scholar
  24. 24.
    Fasmin F, Praveen B V S and Ramanathan S, J Electrochem Soc 162 (2015) H604.CrossRefGoogle Scholar
  25. 25.
    Armstrong R D and Edmonson K, Electrochim Acta 18 (1973) 937.CrossRefGoogle Scholar
  26. 26.
    Sapra S, Li H, Wang Z and Suni I I, J Electrochem Soc 152 (2005) B193.CrossRefGoogle Scholar
  27. 27.
    Diard J P, Gorrect B L and Montella C, J Electroanal Chem 432 (1997) 27.CrossRefGoogle Scholar
  28. 28.
    Harrington D A, J Electroanal Chem 737 (2015) 30.CrossRefGoogle Scholar
  29. 29.
    Harrington D A, J Electroanal Chem 449 (1998) 9.CrossRefGoogle Scholar
  30. 30.
    He Z and Mansfeld F, Energ Environ Sci 2 (2009) 141.CrossRefGoogle Scholar
  31. 31.
    Morant C, Sanz J M, Galan L, Soriano L and Rueda F, Surf Sci 218 (1989) 331.CrossRefGoogle Scholar
  32. 32.
    Bosman H J M, Pijpers A P and Jaspers A W M A, J Catal 161 (1996) 551.CrossRefGoogle Scholar
  33. 33.
    Sleigh C, Pijpers A P, Jaspers A, Coussens B and Meier R J, J Electron Spectrosc Relat Phenom 77 (1996) 41.CrossRefGoogle Scholar
  34. 34.
    Jayaraj J, Ravishankar A and Kamachi Mudali U, Electrochim Acta 85 (2012) 210.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • J. Jayaraj
    • 1
  • D. Nanda Gopala Krishna
    • 1
  • C. Mallika
    • 1
  • U. Kamachi Mudali
    • 2
  1. 1.Corrosion Science and Technology Division, Metallurgy and Materials GroupIndira Gandhi Centre for Atomic Research (IGCAR)KalpakkamIndia
  2. 2.Materials Chemistry & Metal Fuel Cycle GroupIGCARKalpakkamIndia

Personalised recommendations