Skip to main content
Log in

Electrochemical Studies and XPS Analysis of the Surface of Zirconium-702 in Concentrated Nitric Acid With and Without Fluoride Ions

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Zirconium exhibited pseudo-passive behavior in fluorinated nitric acid (11.5 M HNO3 + 0.05 M NaF) as the current density measured from the electrochemical studies was several orders higher than the value in fluoride free nitric acid. Impedance studies on zirconium sample exposed in 11.5 M HNO3 for 240 h confirmed the formation of the passive film with high polarization resistance value and the calculated thickness of the film based on the capacitance value was about ~4.5 nm. On the other hand, in fluorinated nitric acid, the charge transfer resistance value associated with the zirconium dissolution process was dominant when compared to that of the film formation. Results of X-ray photoelectron spectroscopic investigations upheld the presence of ZrOF2 and ZrF4 and indicated that the protective oxide layer growth was restricted by the presence of fluoride ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baldev Raj and Kamachi Mudali U, Prog Nucl Energ 48 (2006) 283.

    Article  Google Scholar 

  2. Bernard C, Mourox J P, Decours J, Demay R and Simonnet J, Proc Int Conf on Fuel Reprocessing and Waste Management-RECOD 91, Sendai, Japan (1991) p 570.

    Google Scholar 

  3. Jayaraj J, Thyagarajan K, Mallika C and Kamachi Mudali U, Nucl Technol 191 (2015) 58.

    Article  Google Scholar 

  4. Jayaraj J, Krishnaveni P, Nanda Gopala Krishna D, Mallika C and Kamachi Mudali U, J Nucl Mater 473 (2016) 157.

    Article  Google Scholar 

  5. Smith T and Hill G R, J Electrochem Soc 105 (1958) 117.

    Article  Google Scholar 

  6. James W J, Custead W G and Straumanis M E, J Phys Chem 64 (1960) 286.

    Article  Google Scholar 

  7. Straumanis M E, James W J and Custead W C, J Electrochem Soc 107 (1960) 502.

    Article  Google Scholar 

  8. Van der Wall E M and Whitener E M, Ind Eng Chem 51 (1959) 51.

    Article  Google Scholar 

  9. Goncalves Z and Munzel H, J Nucl Mater 170 (1990) 261.

    Article  Google Scholar 

  10. Klein R, Corrosion 53 (1997) 327.

    Article  Google Scholar 

  11. Sutter E M M, Hlawka F and Cornet A, Corrosion 46 (1990) 537.

    Article  Google Scholar 

  12. Meyer R E, J Electrochem Soc 112 (1965) 684.

    Article  Google Scholar 

  13. Prono J, Jaszay T, Caprani A and Frayret J P, J Appl Electrochem 25 (1995) 1031.

    Google Scholar 

  14. Fauvet P, Balbaud F, Robin R, Taran Q T, Mugnier A and Espinoux D, J Nucl Mater 375 (2008) 52.

    Article  Google Scholar 

  15. Fontana M G, Corrosion Engineering, Tata McGraw-Hill Education Private Limited, Delhi (2005).

    Google Scholar 

  16. Ravi Shankar A and Kamachi Mudali U, Trans Indian Inst Metals 62 (2009) 545.

    Article  Google Scholar 

  17. Kajimura H and Nagano H, Corros Sci 31 (1990) 261.

    Article  Google Scholar 

  18. Lohrengel M M, Mater Sci Eng R 11 (1993) 243.

    Article  Google Scholar 

  19. Kelly R G, Scully J R, Shoesmith D W, Buchheit R G, Electrochemical Techniques in Corrosion Science and Engineering, Marcel Dekker Inc., New York (2003).

    Google Scholar 

  20. Brug G J, Van Den Eeden A L G, Rehbach M S and Sluyters J H, J Electroanal Chem 176 (1984) 275.

    Article  Google Scholar 

  21. Torres P C, Mesquita T J, Devos O, Tribollet B, Roche V and Nogueira R P, Electrochim Acta 72 (2012) 172.

    Article  Google Scholar 

  22. Franceschetti D R and Macdonald J R, J Electroanal Chem 82 (1977) 271.

    Article  Google Scholar 

  23. Torres P C, Keddam M and Nogueira R P, Electrochim Acta 54 (2008) 518.

    Article  Google Scholar 

  24. Fasmin F, Praveen B V S and Ramanathan S, J Electrochem Soc 162 (2015) H604.

    Article  Google Scholar 

  25. Armstrong R D and Edmonson K, Electrochim Acta 18 (1973) 937.

    Article  Google Scholar 

  26. Sapra S, Li H, Wang Z and Suni I I, J Electrochem Soc 152 (2005) B193.

    Article  Google Scholar 

  27. Diard J P, Gorrect B L and Montella C, J Electroanal Chem 432 (1997) 27.

    Article  Google Scholar 

  28. Harrington D A, J Electroanal Chem 737 (2015) 30.

    Article  Google Scholar 

  29. Harrington D A, J Electroanal Chem 449 (1998) 9.

    Article  Google Scholar 

  30. He Z and Mansfeld F, Energ Environ Sci 2 (2009) 141.

    Article  Google Scholar 

  31. Morant C, Sanz J M, Galan L, Soriano L and Rueda F, Surf Sci 218 (1989) 331.

    Article  Google Scholar 

  32. Bosman H J M, Pijpers A P and Jaspers A W M A, J Catal 161 (1996) 551.

    Article  Google Scholar 

  33. Sleigh C, Pijpers A P, Jaspers A, Coussens B and Meier R J, J Electron Spectrosc Relat Phenom 77 (1996) 41.

    Article  Google Scholar 

  34. Jayaraj J, Ravishankar A and Kamachi Mudali U, Electrochim Acta 85 (2012) 210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jayaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaraj, J., Nanda Gopala Krishna, D., Mallika, C. et al. Electrochemical Studies and XPS Analysis of the Surface of Zirconium-702 in Concentrated Nitric Acid With and Without Fluoride Ions. Trans Indian Inst Met 71, 521–531 (2018). https://doi.org/10.1007/s12666-017-1165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1165-z

Keywords

Navigation