Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2725–2732 | Cite as

Microstructure Evolution and Mechanical Properties of Nano-structured Al–0.2 wt%Zr Alloy Fabricated by Accumulative Roll Bonding (ARB) Process

  • Bahram Azad
  • Hamidreza Mohammadian Semnani
  • Ehsan Borhani
Technical Paper
  • 62 Downloads

Abstract

An Al–0.2 wt%Zr alloy was subjected to an accumulative roll bonding (ARB) process up to a strain of 8.0. The process led to ultrafine-grained materials with a mean grain size of 400 nm by 10-cycle ARB process, which was studied by atomic force microscopy (AFM). The Vickers microhardness measurements showed that the hardness value monotonously increased the number of ARB cycles and then reached a constant value of about 45 HV. Yield strength and tensile strength increased during the ARB process and reached to 125 and 158 MPa, respectively, after 10-cycles ARB process. The total elongation and uniform elongation were 65 and 48% before the ARB process and decreased after 10-cycle ARB to 17.5 and 6.5%, respectively. Also, after the tensile test, the fracture surfaces were studied by scanning electron microscope (SEM) and the result showed that the fracture mode in the 0 cycle (before ARB) and 1 cycle was ductile and changed to brittle with further ARB processing from 3 up to 10 cycles.

Keywords

Accumulative roll bonding (ARB) process Al–0.2 wt%Zr alloy Ultrafine-grained (UFG) Microstructure evolution Mechanical properties Fractography 

References

  1. 1.
    Borhani E, Jafarian H, Shibata A, and Tsuji N, Mater Trans 53 (2012) 1863.CrossRefGoogle Scholar
  2. 2.
    Valiev R Z, Estrin Y, Horita Z, Langdon T G, Zehetbauer M J, and Zhu Y T, JOM 58 (2006) 33.CrossRefGoogle Scholar
  3. 3.
    Valiev R Z. and Langdon T G, Prog Mater Sci 51 (2006) 881.CrossRefGoogle Scholar
  4. 4.
    Borhani E, Jafarian H, Terada D, Adachi H, and Tsuji N, Mater Trans 54 (2012) 72.CrossRefGoogle Scholar
  5. 5.
    Schafler E, and Kerber M B, Mater Sci Eng A 462 (2007) 139.CrossRefGoogle Scholar
  6. 6.
    Huang J Y, Zhu Y T, Jiang H, and Lowe T C, Acta Mater 49 (2001) 1497.CrossRefGoogle Scholar
  7. 7.
    Korbel A, Richert M, and Richert J, In Proceedings of the 2nd RISO International Symposium on Metallurgy and Material Science (1981), p 445. (in Denmark).Google Scholar
  8. 8.
    Mizunuma S, Mater Sci Forum (2006) 185.Google Scholar
  9. 9.
    Nakamura K, Neishi K, Kaneko K, Nakagaki M, and Horita Z, Mater Trans 45 (2004) 3338.CrossRefGoogle Scholar
  10. 10.
    Saito Y, Tsuji N, Utsunomiya H, Sakai T, and Hong R G, Scr Mater 39 (1998) 1221.CrossRefGoogle Scholar
  11. 11.
    Tsuji N, Saito Y, Lee S H, and Minamino Y, Adv Eng Mater 5 (2003) 338.CrossRefGoogle Scholar
  12. 12.
    Knipling K E, Dunand D C, and Seidman D N, Acta Mater 56 (2008) 1182.CrossRefGoogle Scholar
  13. 13.
    Humphreys F J, and Hatherly M, Recrystallization and Related Annealing Phenomena, 2nd ed, Elsevier, Amsterdam (2004).Google Scholar
  14. 14.
    Knipling K E, Dunand D C, and Seidman D N, Acta Mater 56 (2008) 114.CrossRefGoogle Scholar
  15. 15.
    Pirgazi H, Akbarzadeh A, Petrov R, and Kestens L, Mater Sci Eng A 497 (2008) 132.CrossRefGoogle Scholar
  16. 16.
    Saito Y, Utsunomiya H, Tsuji N, and Sakai T, Acta Mater 47 (1999) 579.CrossRefGoogle Scholar
  17. 17.
    Lee S H, Saito Y, Sakai T, and Utsunomiya H, Mater Sci Eng A 325 (2002) 228.CrossRefGoogle Scholar
  18. 18.
    Smirnova N A, Levit V I, Pilyugin V I, Kuznetsov R I, Davydova L S, and Sazonova V A, Fiz Met Metalloved 61 (1986) 1170.Google Scholar
  19. 19.
    Borhani E, Microstructure and Mechanical Property of Heavily Deformed AlSc Alloy Having Different Starting Microstructures, Ph.D. thesis, Kyto University, Japan (2011).Google Scholar
  20. 20.
    Lee S H, Sakai T, Saito Y, Utsunomiya H, and Tsuji N, Mater Trans 40 (1999) 1422.CrossRefGoogle Scholar
  21. 21.
    Tohidi A A, Ketabchi M, and Hasannia A, Mater Sci Eng A 577 (2013) 43.CrossRefGoogle Scholar
  22. 22.
    Hansen N, Acta Metallurgica 25 (1977) 863.CrossRefGoogle Scholar
  23. 23.
    Totten G E, Xie L, and Funatani K Handbook of Mechanical Design Alloy vol 164, p 627, CRC Press.Google Scholar
  24. 24.
    May J, Amberger D, Dinkel M, Hoppel H W, and Goken M, Mater Sci Eng A 483–484 (2008) 481.CrossRefGoogle Scholar
  25. 25.
    Rezaei M R, Toroghinejad M R, and Ashrafzadeh F, Mater Process Tech 211 (2011) 1184.CrossRefGoogle Scholar
  26. 26.
    ASM handbooks, Fractography, vol 12.Google Scholar
  27. 27.
    Azad B, Borhani E, and Mohammadian Semnani H R, Kovove Mater 54 (2016) 9.Google Scholar
  28. 28.
    Azad B, and Borhani E, J Min Metall Sect B 52 (2016) 93.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Bahram Azad
    • 1
  • Hamidreza Mohammadian Semnani
    • 1
  • Ehsan Borhani
    • 2
  1. 1.Faculty of Metallurgical and Materials EngineeringSemnan UniversitySemnanIran
  2. 2.Department of Nanotechnology, Nano-materials Science GroupSemnan UniversitySemnanIran

Personalised recommendations