Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2673–2682 | Cite as

Properties and Mechanism of Al/St Bimetal Tube Bonding Produced by Cold Spin-Bonding (CSB) Process

  • M. Samandari
  • K. Abrinia
  • A. Akbarzadeh
  • H. A. Bulaqi
  • G. Faraji
Technical Paper
  • 92 Downloads

Abstract

Spin-bonding is a novel tube cladding method for fabrication of bilayer tubes based on flow-forming process. The bimetal Al/St tubular components have extensive application in different industries. In this paper, an Al/St bimetal tube was successfully produced at different thickness reductions from 35 to 65% and mechanical and metallurgical aspects of the joint were investigated. Peeling tests were done to investigate the strength of the bond. The results showed that an increase in the thickness reduction led to a significant increase in the bond strength. Besides, the bonding mechanism between Al as inner tube to St as an outer one resulting from spin-bonding process was investigated. The results showed that an excellent bonding of Al and St tubes could be achieved from this process. The results showed that the bonding process consisted of three stages. First, removal of surface layers resulting in contact between the virgin metals of two bond surfaces and then an unstable bond was formed that stabilized as deformation proceeded. Finally the bond strengthening occurred. The SEM micrographs of the peeled surfaces showed that removing surface films in aluminum and steel in the first stage was based on different mechanisms. Also, SEM back-scatter images of bond interface showed that no intermetallic phases were formed.

Keywords

Spin-bonding Tube cladding Bimetal tubes Film theory Bonding mechanism Bond strength 

References

  1. 1.
    Mohebbi M S, and Akbarzadeh A, Int. J. Adv. Manuf. Technol. 54 (2011) 1043.CrossRefGoogle Scholar
  2. 2.
    Li L, Nagai K, and Yin F X, Sci. Technol. Adv. Mater. 9 (2008).Google Scholar
  3. 3.
    Chen L, Yang Z, Jha B, Xia G, and Stevenson J W, J. Power Sources 152 (2005) 40.CrossRefGoogle Scholar
  4. 4.
    Baghaei M, and Faraji G, J. Adv. Mater. Process. 4 (2016) 21.Google Scholar
  5. 5.
    Bay N, Bjerregaard H, Petersen S B, and Dos Santos C H, J. Mater. Process. Technol. 45(1–4) (1994) 1.CrossRefGoogle Scholar
  6. 6.
    Kim S H, Kim H W, Euh K, Kang J H, and Cho J H, Mater. Des. 35 (2012) 290.CrossRefGoogle Scholar
  7. 7.
    Li X, Zu G, and Deng Q, in Light Metals 2011. Wiley, New York (2011), p 611.Google Scholar
  8. 8.
    Faraji G, and Kim H, Mater. Sci. Technol. 33 (2017) 905–923.CrossRefGoogle Scholar
  9. 9.
    Buchner M, Buchmayr B, Bichler C, and Riemelmoser F, AIP Conf. Proc. 907 (2007) 264.CrossRefGoogle Scholar
  10. 10.
    Manesh H D, and Taheri A K, Mater. Des. 24 (2003) 617.CrossRefGoogle Scholar
  11. 11.
    Cline C L, Weld. J. 45 (1966) 481-s. ISSN 0043-2296 CODEN WEJUA3.Google Scholar
  12. 12.
    Hosseini S A, Hosseini M, and Manesh H D, Mater. Des. 32 (2011) 76.CrossRefGoogle Scholar
  13. 13.
    Bay N, Clemensen C, Juelstorp O, and Wanheim T, CIRP Ann. Manuf. Technol. 34 (1985) 221.CrossRefGoogle Scholar
  14. 14.
    Pan D, Gao K, and Yu J, Mater. Sci. Technol. 5 (1989) 934.CrossRefGoogle Scholar
  15. 15.
    Jamaati R, and Toroghinejad M R, Mater. Sci. Eng. A 527 (2010) 2320.CrossRefGoogle Scholar
  16. 16.
    Mohamed H A, and Washburn J, Weld. J. (Miami); (United States) (1975) p. Medium: X; Size: Pages: vp.Google Scholar
  17. 17.
    Buchner M, Buchner B, Buchmayr B, Kilian H, and Riemelmoser F, Int. J. Mater. Form. 1 (2008) 1279.CrossRefGoogle Scholar
  18. 18.
    Jindal V, and Srivastava V C, J. Mater. Process. Technol. 195 (2008) 88.CrossRefGoogle Scholar
  19. 19.
    Kang H G, Kim J K, Huh M Y, and Engler O, Mater. Sci. Eng. A 452–453 (2007) 347.CrossRefGoogle Scholar
  20. 20.
    Kawase H, Makimoto M, Takagi K, Ishida Y, and Tanaka T, Trans. Iron Steel Inst. Jpn. 23 (1983) 628.CrossRefGoogle Scholar
  21. 21.
    Manesh H D, and Shahabi H S, J. Alloys Compd. 476 (2009) 292.CrossRefGoogle Scholar
  22. 22.
    Manesh H D, and Taheri A K, J. Alloys Compd. 361 (2003) 138.CrossRefGoogle Scholar
  23. 23.
    Manesh H D, and Taheri A K, Mater. Sci. Technol. 20 (2004) 1064.CrossRefGoogle Scholar
  24. 24.
    Movahedi M, Kokabi A H, and Seyed Reihani S M, Mater. Des. 32 (2011) 3143.CrossRefGoogle Scholar
  25. 25.
    Nezhad M S A, and Ardakani A H, Mater. Des. 30 (2009) 1103.CrossRefGoogle Scholar
  26. 26.
    Chitkara N R, and Aleem A, Int. J. Mech. Sci. 43 (2001) 2857.CrossRefGoogle Scholar
  27. 27.
    Khosravifard A, and Ebrahimi R, Mater. Des. 31 (2010) 493.CrossRefGoogle Scholar
  28. 28.
    Chen Z, Ikeda K, Murakami T, Takeda T, and Xie J X, J. Mater. Process. Technol. 137 (2003) 10.CrossRefGoogle Scholar
  29. 29.
    Sun X J, Tao J, and Guo X Z, Trans. Nonferr. Met. Soc. China 21 (2011) 2175.CrossRefGoogle Scholar
  30. 30.
    Bhanumurthy K, Mater. Sci. Technol. 22 (2006) 321.CrossRefGoogle Scholar
  31. 31.
    Sponseller D L, Timmons G A, and Bakker W T, J. Mater. Eng. Perform. 7 (1998) 227.CrossRefGoogle Scholar
  32. 32.
    Wang X S, Li P N, and Wang R Z, Int. J. Mach. Tools Manuf. 45 (2005) 373.CrossRefGoogle Scholar
  33. 33.
    Mohebbi M S, and Akbarzadeh A, J. Mater. Process. Technol. 210 (2010) 510.CrossRefGoogle Scholar
  34. 34.
    Zhan Z, He Y, Wang D, and Gao W, Surf. Coat. Technol. 201 (2006) 2684.CrossRefGoogle Scholar
  35. 35.
    Reshadi F, Faraji G, Aghdamifar S, Yavari P, and Mashhadi M M, Mater. Sci. Technol. 31 (2015) 1879.CrossRefGoogle Scholar
  36. 36.
    Faraji G, Babaei A, Mashhadi M M, and Abrinia K, Mater. Lett. 77 (2012) 82.CrossRefGoogle Scholar
  37. 37.
    Afrasiab M, Faraji G, Tavakkoli V, Mashhadi M M, and Dehghani K, Trans. Indian Inst. Met. 68 (2015) 873.CrossRefGoogle Scholar
  38. 38.
    Lapovok R, Ng H P, Tomus D, and Estrin Y, Scr. Mater. 66 (2012) 1081.CrossRefGoogle Scholar
  39. 39.
    Movahedi M, Kokabi A, and Reihani S S, Mater. Des. 32 (2011) 3143.CrossRefGoogle Scholar
  40. 40.
    Manesh H D, and Shahabi H S, J. Alloys Compd. 476 (2009) 292.CrossRefGoogle Scholar
  41. 41.
    Jamaati R, and Toroghinejad M R, J. Mater. Eng. Perform. 20 (2011) 191.CrossRefGoogle Scholar
  42. 42.
    Chawla, S.L., Materials selection for corrosion control. Vol. 1. ASM international (1993)Google Scholar
  43. 43.
    Gur M, and Tirosh J, J. Eng. Ind. 104 (1982) 17.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • M. Samandari
    • 1
  • K. Abrinia
    • 1
  • A. Akbarzadeh
    • 2
  • H. A. Bulaqi
    • 1
  • G. Faraji
    • 1
  1. 1.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations