Skip to main content

Advertisement

Log in

Graphite–Aluminium Composite Anode for Li-Ion Battery by High Energy Ball Milling

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Graphite–30% aluminium composite powder is prepared by high energy ball milling for different time intervals to improve the capacity over the conventionally used natural graphite powder as anode in Li-ion battery. Optimum milling time of 10 h results in higher capacity than either lower or higher milling duration. Initial increase in capacity with milling time is attributed to the reduction in crystallite size and alloying of Al and C. The formation of surface oxide layer on Al particles reduces the conductivity and capacity of the powder milled beyond 10 h. Formation of cracks during charge–discharge cycling of the anode causes fading in the capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yoshio M, Brodd R J, and Kozawa A, Li-Ion Batteries, Springer, Berlin (2009).

    Book  Google Scholar 

  2. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, and Schleich D M, J Power Sources 9798 (2001) 185.

    Article  Google Scholar 

  3. Jeong G J, Kim Y U, Sohn H J, and Kang T, J Power Sources 101 (2001) 201.

    Article  Google Scholar 

  4. Lindsay M J, Wang G X, Liu H K, J Power Sources 119–121 (2003) 84.

    Article  Google Scholar 

  5. Au M, Mc Whorter S, Ajo H, Adams T, Zhao Y, and Gibbs J, J Power Sources 195 (2010) 3333.

    Article  Google Scholar 

  6. Lei X, Xiang J, Ma X, Wang C, and Sun J, J Power Sources 166 (2007) 509.

    Article  Google Scholar 

  7. Venkateswara Rao K T, and Ritchie R O, Int Mater Rev 37 (1992) 153.

    Article  Google Scholar 

  8. Park J H, Hudaya C, Kim A Y, Rhee D K, Yeo S J, and Choi W, Chem Commun R Soc Chem 22 (2014) 2837.

    Article  Google Scholar 

  9. Huanga Y, Lina X, Pana Q, Lic Q, Zhanga X, Yana Z, Wub X, Heb Z, and Wanga H, Electrochim Acta 193 (2016) 253.

    Article  Google Scholar 

  10. Li S, Niu J, Zhao Y C, So K P, Wang C, Wang C A, and Li J, Nat Commun 6:7872 (2015) 1.

  11. Rahner D, Machill S, Schlorb H, Siury K, Kloss M, Plieth W, J Solid State Electrochem 2 (1998) 78.

    Article  Google Scholar 

  12. Tran T T, and Obrovac M N, J Electrochem Soc 158 (2011) A1411.

    Article  Google Scholar 

  13. Pu L, Ping Z, Fei W, Zhan-bo S, Qing H, Sen Y, Li-qun W, and Xiao-ping S, Trans Nonferrous Met Soc China 22 (2012) 1393.

    Article  Google Scholar 

  14. ZhanBo S, Peng L, Dong W, Qing H, Shu Z M, Min Z Y, Yan L, and Ping S X, Sci China Ser E 52 (2009) 2288.

    Article  Google Scholar 

  15. Zhang W J, J Power Sources 196 (2011) 13.

    Article  Google Scholar 

  16. Linden D, and Reddy T B, Handbook of Batteries, 4th edn, McGraw-Hill Education, New York (2010).

    Google Scholar 

  17. Culity B D, Elements of X-ray Diffraction, IInd Ed., Addison Wesley (1978).

  18. Satyavani T V S L, Ramya Kiran B, Rajesh Kumar V, Srinivas Kumar A, and Naidu S V, Eng Sci Technol Int J 19 (2016) 40.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. O.R Nandagopan, Director and Dr. A. Srinivas Kumar, Associate Director, NSTL for the kind support for carrying out the research work. Acknowledgments are due to Mr. A. Veera Seenu, Asst. Professor, RJUKT, Nuzvid and Mr. Sreekanth, Scientist-C, RCI for their help in SEM and XRD characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Srinivas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidu, J.S., Srinivas, M. & Sujatha, V. Graphite–Aluminium Composite Anode for Li-Ion Battery by High Energy Ball Milling. Trans Indian Inst Met 70, 2661–2666 (2017). https://doi.org/10.1007/s12666-017-1126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1126-6

Keywords

Navigation