Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2661–2666 | Cite as

Graphite–Aluminium Composite Anode for Li-Ion Battery by High Energy Ball Milling

Technical Paper
  • 99 Downloads

Abstract

Graphite–30% aluminium composite powder is prepared by high energy ball milling for different time intervals to improve the capacity over the conventionally used natural graphite powder as anode in Li-ion battery. Optimum milling time of 10 h results in higher capacity than either lower or higher milling duration. Initial increase in capacity with milling time is attributed to the reduction in crystallite size and alloying of Al and C. The formation of surface oxide layer on Al particles reduces the conductivity and capacity of the powder milled beyond 10 h. Formation of cracks during charge–discharge cycling of the anode causes fading in the capacity.

Keywords

Li-ion battery Graphite anode Cyclic voltammetry High energy ball milling 

Notes

Acknowledgements

The authors thank Dr. O.R Nandagopan, Director and Dr. A. Srinivas Kumar, Associate Director, NSTL for the kind support for carrying out the research work. Acknowledgments are due to Mr. A. Veera Seenu, Asst. Professor, RJUKT, Nuzvid and Mr. Sreekanth, Scientist-C, RCI for their help in SEM and XRD characterization.

References

  1. 1.
    Yoshio M, Brodd R J, and Kozawa A, Li-Ion Batteries, Springer, Berlin (2009).CrossRefGoogle Scholar
  2. 2.
    Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, and Schleich D M, J Power Sources 9798 (2001) 185.CrossRefGoogle Scholar
  3. 3.
    Jeong G J, Kim Y U, Sohn H J, and Kang T, J Power Sources 101 (2001) 201.CrossRefGoogle Scholar
  4. 4.
    Lindsay M J, Wang G X, Liu H K, J Power Sources 119–121 (2003) 84.CrossRefGoogle Scholar
  5. 5.
    Au M, Mc Whorter S, Ajo H, Adams T, Zhao Y, and Gibbs J, J Power Sources 195 (2010) 3333.CrossRefGoogle Scholar
  6. 6.
    Lei X, Xiang J, Ma X, Wang C, and Sun J, J Power Sources 166 (2007) 509.CrossRefGoogle Scholar
  7. 7.
    Venkateswara Rao K T, and Ritchie R O, Int Mater Rev 37 (1992) 153.CrossRefGoogle Scholar
  8. 8.
    Park J H, Hudaya C, Kim A Y, Rhee D K, Yeo S J, and Choi W, Chem Commun R Soc Chem 22 (2014) 2837.CrossRefGoogle Scholar
  9. 9.
    Huanga Y, Lina X, Pana Q, Lic Q, Zhanga X, Yana Z, Wub X, Heb Z, and Wanga H, Electrochim Acta 193 (2016) 253.CrossRefGoogle Scholar
  10. 10.
    Li S, Niu J, Zhao Y C, So K P, Wang C, Wang C A, and Li J, Nat Commun 6:7872 (2015) 1.Google Scholar
  11. 11.
    Rahner D, Machill S, Schlorb H, Siury K, Kloss M, Plieth W, J Solid State Electrochem 2 (1998) 78.CrossRefGoogle Scholar
  12. 12.
    Tran T T, and Obrovac M N, J Electrochem Soc 158 (2011) A1411.CrossRefGoogle Scholar
  13. 13.
    Pu L, Ping Z, Fei W, Zhan-bo S, Qing H, Sen Y, Li-qun W, and Xiao-ping S, Trans Nonferrous Met Soc China 22 (2012) 1393.CrossRefGoogle Scholar
  14. 14.
    ZhanBo S, Peng L, Dong W, Qing H, Shu Z M, Min Z Y, Yan L, and Ping S X, Sci China Ser E 52 (2009) 2288.CrossRefGoogle Scholar
  15. 15.
    Zhang W J, J Power Sources 196 (2011) 13.CrossRefGoogle Scholar
  16. 16.
    Linden D, and Reddy T B, Handbook of Batteries, 4th edn, McGraw-Hill Education, New York (2010).Google Scholar
  17. 17.
    Culity B D, Elements of X-ray Diffraction, IInd Ed., Addison Wesley (1978).Google Scholar
  18. 18.
    Satyavani T V S L, Ramya Kiran B, Rajesh Kumar V, Srinivas Kumar A, and Naidu S V, Eng Sci Technol Int J 19 (2016) 40.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Andhra University College of EngineeringVisakhapatnamIndia
  2. 2.Naval Science and Technological LaboratoryVisakhapatnamIndia

Personalised recommendations