Advertisement

Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2629–2639 | Cite as

Homogenization for Dispersion and Reduction in Length of Carbon Nanotubes

  • Hindumathi Ramaraj
  • Jagannatham Madiga
  • Hemaprabha Elangovan
  • Prathap Haridoss
  • Chandra P. Sharma
Technical Paper

Abstract

An important aspect that limits the use of carbon nanotubes (CNTs) is the difficulty in obtaining homogeneously dispersed CNTs of uniform length. Hence, homogenization of multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) was carried out using bullet blender and the dispersion behavior was compared with that of ultrasonication. 1% sodium dodecyl sulphate (SDS), Triton-x-100 and polyethylene glycol 4000 were used as dispersing agents during homogenization. The dispersed CNTs were studied using transmission electron microscopy, ImageJ and Raman spectroscopy. Though dispersion and reduction in length of MWCNTs were observed both with ultrasonication and homogenization, lowest length range with about 75% reduction in polydispersity index was obtained on homogenization. Longer time of ultrasonication resulted in damage to small MWCNTs. Well dispersed and shorter MWCNTs were obtained with Triton-x-100 while reduction in length was minimum with SDS. SWCNTs of less than 1 μm length could be obtained by homogenization with Triton-x-100.

Keywords

Carbon nanotubes Raman spectroscopy High resolution electron microscopy Biomedical applications Homogenization 

Notes

Acknowledgements

We thank NEXT ADVANCE Inc., USA for permitting us to perform experiments using Bullet Blender. We also thank Dr. Joseph Berkmans for helping in TEM imaging.

References

  1. 1.
    Ajayan P M, Chem Rev 99 (1999) 1787.CrossRefGoogle Scholar
  2. 2.
    Collins P G, Avouris P, Sci Am (2000) 62.Google Scholar
  3. 3.
    Moradi O, Yari M, Zare K, Mirza B and Najafi F, Fuller Nanotub Carbon Nanostruct 20 (2012) 138.CrossRefGoogle Scholar
  4. 4.
    Bianco A, Kostarelos K, Prato M, Curr Opin Chem Biol 9 (2005) 674.CrossRefGoogle Scholar
  5. 5.
    McEuen P L, Phys World June (2000) 31.Google Scholar
  6. 6.
    Sun C H, Yin L C, Li F, Lu G Q, Cheng H M, Chem Phys Lett 403 (2005)343.CrossRefGoogle Scholar
  7. 7.
    Wang X, Jiang Q, Xu W, Cai W, Inoue Y, and Zhu Y, Carbon 53 (2013) 145.CrossRefGoogle Scholar
  8. 8.
    Paredes J I, and Burghard M, Langmuir 20 (2004) 5149.CrossRefGoogle Scholar
  9. 9.
    Wang X X, Wang J N, Chang H, and Zhang Y F, Adv Drug Deliv Rev 17 (2007) 3613.Google Scholar
  10. 10.
    Collins K L, Orringer D A, and Patil P G, J Nanotechnol Eng Med 1 (2010) 1.CrossRefGoogle Scholar
  11. 11.
    Huang Y Y, and Terentjev M E, Polymers 4 (2012) 275.CrossRefGoogle Scholar
  12. 12.
    Koh B, Park J B, Hou X, and Cheng W, J Phys Chem B 115 (2011) 2627.CrossRefGoogle Scholar
  13. 13.
    Ham H T, Choi Y S, and Chung I J, J. Colloid Interface Sci 286 (2005) 216.CrossRefGoogle Scholar
  14. 14.
    Sohrabi B, Poorgholami-Bejarpasi N, and Nayeri N, J Phys Chem B 118 (2014) 3094.CrossRefGoogle Scholar
  15. 15.
    Vaisman L, Wagner H D, and Marom G, Adv Colloid Interface Sci 128–130 (2006) 37.CrossRefGoogle Scholar
  16. 16.
    Hilding J, Grulke E A, George Zhang Z, and Lockwood F, J Dispers Sci Technol 24 (2003) 1.CrossRefGoogle Scholar
  17. 17.
    Stepanek I, Maurin G, Bernier P, Gavillet J, Loiseau A, Edwards R, and Jaschinski O, Chem Phys Lett 331 (2000) 125.CrossRefGoogle Scholar
  18. 18.
    Maurin G, Stepanek I, Bernier P, Colomer J F, Nagy J B, and Henn F, Carbon 39 (2001) 1273.CrossRefGoogle Scholar
  19. 19.
    Lee J, Jeong T, Heo J, Park S H, Lee D, Park J B, Han H, Kwon Y, Kovalev I, Yoon S M, and Choi J Y, Carbon 44 (2006) 2984.CrossRefGoogle Scholar
  20. 20.
    Azoubel S, and Magdassi S. Carbon 48 (2010) 3346.CrossRefGoogle Scholar
  21. 21.
    Lancaster K Z, and Pfeiffer J K, PLoS Pathog 6 (2010) e1000791.CrossRefGoogle Scholar
  22. 22.
    Bessen R A, Robinson C J, Seelig D M, Watschke C P, Lowe D, Shearin H, Martinka S, and Babcock A M, PLoS One 6 (2011) e28026.CrossRefGoogle Scholar
  23. 23.
    Kharissova O V, Kharisov B I, and de Casas Ortiz E G, RSC Adv 3 (2013) 24812.CrossRefGoogle Scholar
  24. 24.
    Rastogi R, Kaushal R, Tripathi S K, Sharma A L, Kaur I, and Bharadwaj L M, J Colloid Interface Sci 328 (2008) 421.CrossRefGoogle Scholar
  25. 25.
    Arepalli S, Nikolaev P, Gorelik O, Hadjiev V G, Holmes W, Files B, and Yowell L, Carbon 42 (2004) 1783.CrossRefGoogle Scholar
  26. 26.
    Guidelines for Dynamic Light Scattering Measurement and Analysis, Report V 1.4, Nanocomposix, INC., San Diego, US (2015).Google Scholar
  27. 27.
    Baalousha M, and Lead J R, Nat Nanotechnol 8 (2013) 308.CrossRefGoogle Scholar
  28. 28.
    Brown G W, Am J Dis Child 136 (1982) 937.CrossRefGoogle Scholar
  29. 29.
    Salzmann C G, Chu B T T, Tobias G, Tobias G, Llewellyn S A, and Green M L H, Carbon 45 (2007) 907.CrossRefGoogle Scholar
  30. 30.
    Richard C, Balavoine F, Schultz P, Ebbessen TW, and Mioskowski C, Science 300 (2003) 775.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Hindumathi Ramaraj
    • 1
  • Jagannatham Madiga
    • 2
  • Hemaprabha Elangovan
    • 2
  • Prathap Haridoss
    • 2
  • Chandra P. Sharma
    • 3
  1. 1.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia
  3. 3.Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia

Personalised recommendations