Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2609–2628 | Cite as

Characterization of Vacuum Plasma Sprayed Reinforced Hydroxyapatite Coatings on Ti–6Al–4V alloy

Technical Paper
  • 87 Downloads

Abstract

Two reinforced hydroxyapatite (HA) coatings with an intermediate layer of zirconia were deposited on Ti–6Al–4V by vacuum plasma spray (VPS) technique. In first coating, HA was reinforced with 10 wt % Al2O3 whereas in second coating, HA was reinforced with 10 wt % ZrO2. The objective of this study was to investigate the microstructure, phase formation and mechanical properties like hardness and bond strength of as-sprayed coatings and the coatings after post coating heat treatment at 700 °C for 1 h. The characterization of the coatings was performed by using SEM/EDAX, XRD, porosity, crystallinity and roughness measurement. The coatings were also evaluated for mechanical properties like hardness and tensile bond strength. It was observed that after post coating heat treatment, crystallinity increased and porosity decreased which indicated recrystallization of amorphous phases of as-sprayed coatings. Heat treatment resulted into improvement in cross-sectional hardness, however sharp decrease in bond strength was observed.

Keywords

Vacuum plasma spray Characterization Hydroxyapatite Bond coat Reinforcement Mechanical properties 

Notes

Acknowledgements

This work has been supported by IKG Punjab Technical University, Jalandhar, India. The authors would like to express their sincere gratitude to IKG Punjab Technical University, Jalandhar, India.

References

  1. 1.
    Surmenev R A, Surf Coat Technol 206 (2012) 2035.CrossRefGoogle Scholar
  2. 2.
    Mudali U K, Sridhar T M, and Raj B, Sadhana, 28 (2003), Parts 3 & 4, 601.Google Scholar
  3. 3.
    Arcos D, Rodriguez-Carvajal J, and Vallet-Regi M, Phys B 350 (2004) 607.CrossRefGoogle Scholar
  4. 4.
    Cook S D, Thomas K A, Dalton J E, Volkman T K, 3rd Whitecloud T S, and Kay J F, J Biomed Mater Res 26 (1992) 989.CrossRefGoogle Scholar
  5. 5.
    Wenxiu Q, Khor K A, Xu J L, and Yu L G, Eur Ceram Soc 28 (2008) 3083.Google Scholar
  6. 6.
    Salih V, Georgiou G, Knowles J C, and Olsen I, Biomaterials 22 (2001) 2817.CrossRefGoogle Scholar
  7. 7.
    Kim H-W, Georgiou G, Knowles J C, Koh Y-H, and Kim H-E, Biomaterials 25 (2004) 4203.Google Scholar
  8. 8.
    Yugeswaran S, Yoganand C P, Kobayashi A, Paraskevopoulos K M, and Subramanian B, J Mech Behav Biomed Mater 9 (2012) 22.CrossRefGoogle Scholar
  9. 9.
    Morks M F, J Mech Behav Biomed Mater 1 (2008) 105.CrossRefGoogle Scholar
  10. 10.
    Singh G, Singh S, and S. Prakash, Surf Coat Technol 205 (2011) 4814.CrossRefGoogle Scholar
  11. 11.
    Melero H, Fargas G, Garcia-Giralt N, Fernández J, and Guilemany J M, Surf Coat Technol 242 (2014) 92.CrossRefGoogle Scholar
  12. 12.
    Perumal G, Geetha M, Asokamani R, and Alagumurthi N, Wear 311 (2014) 101.CrossRefGoogle Scholar
  13. 13.
    BalaniK, Chen Y, Harimkar S P, Dahotre N B, and Aggarwal A, Acta Biomaterialia 3 (2007) 944.CrossRefGoogle Scholar
  14. 14.
    Li H, Khor K A, and Cheang P, Eng Fracture Mech 74 (2007) 1894.CrossRefGoogle Scholar
  15. 15.
    Tsui Y C, Doyal C, and Clyne T W, Biomaterials 19 (1998) 2031.CrossRefGoogle Scholar
  16. 16.
    Lamy D, Pierre A C, Heimann R B, J Mater Res 11 (1996) 680.CrossRefGoogle Scholar
  17. 17.
    Chen J-Z, Shi Y-L, Wang L, Yan F-Y, and Zhang F-Q, Mater Lett 60 (2006) 2538.CrossRefGoogle Scholar
  18. 18.
    Lee J-H, Kim H-E, and Koh Y-H, Mater Lett 63 (2009) 1995.CrossRefGoogle Scholar
  19. 19.
    Leeuwenburgh S C G, Wolke J G C, Siebers M C, Schoonman J, and Jansen J A, Biomaterials 27 (2006) 3368.CrossRefGoogle Scholar
  20. 20.
    Milell E, Cosentino F, Licciulli A, and Massaro C, Biomaterials 22 (2001) 1425.CrossRefGoogle Scholar
  21. 21.
    Sridhar T M, Mudali U K, and Subbaiyan M, Corros Sci 45 (2003) 237.CrossRefGoogle Scholar
  22. 22.
    Wang C X, Chen Z Q, Guan L M, Wang M, Liu Z Y, and Wang P L, Nucl Instrum Methods Phys Res B 179 (2001) 364.CrossRefGoogle Scholar
  23. 23.
    Nelea V, Morosanu C, lliescu M, Mihailescu I N, Surf Coat Technol 173 (2003) 315.CrossRefGoogle Scholar
  24. 24.
    Khandelwala H, Singh G, Agrawal K, Prakash S, and Agarwal R D, Appl Surf Sci 265 (2013) 30.CrossRefGoogle Scholar
  25. 25.
    Li H, Khor K A, and Cheang P, Biomaterials 23 (2002) 85.CrossRefGoogle Scholar
  26. 26.
    Gledhill H C, Turner I G, and Doyle C, Biomaterials 22 (2001) 695.CrossRefGoogle Scholar
  27. 27.
    Gu Y W, Khor K A, and Cheang P, Biomaterials 24 (2003) 1603.CrossRefGoogle Scholar
  28. 28.
    Elsing R, Knotek O, Balting U, Surf Coat Technol 41 (1990) 147.CrossRefGoogle Scholar
  29. 29.
    Brown S R, Turner I G, and Reiter H, J Mater Sci Mater Med 5 (1994) 756.Google Scholar
  30. 30.
    Yang Y C, and Chang E, Biomaterials 22 (2001) 1827.CrossRefGoogle Scholar
  31. 31.
    Lee Y-P, Wang C-K, Huang T-H, Chen C-C, Kao C-T, and Ding S-J, Surf Coat Technol 197 (2005) 367.CrossRefGoogle Scholar
  32. 32.
    Chen C-C, and Ding S-J, Mater Trans Jpn Inst Metals 47 (2006) 935.Google Scholar
  33. 33.
    Brossa F, Cigada A, Chiesa R, Paracchini L, Consonni C, J Mater Sci Mater Med 5 (1994) 855.Google Scholar
  34. 34.
    Chou B-Y, Chang E, Scr Mater 45 (2001) 487.CrossRefGoogle Scholar
  35. 35.
    Zheng X B, and Ding C X, J Therm Spray Technol 9 (2000) 520.CrossRefGoogle Scholar
  36. 36.
    Scardi P, Leoni M, and Bertamini L, Thin Solid Films 278 (1996) 96.CrossRefGoogle Scholar
  37. 37.
    J Therm Spray Technol, 22 (2013) 1263.CrossRefGoogle Scholar
  38. 38.
    Tsui Y C, Doyle C, and Clyne T W, Biomaterials 19 (1998) 2015.CrossRefGoogle Scholar
  39. 39.
    Dong Z L, Khor K A, Quek C H, White T J, and Cheang P, Biomaterials 24 (2003) 97.CrossRefGoogle Scholar
  40. 40.
    Morks M F, and Kobayashi A, Appl Surf Sci 253 (2007) 7136.CrossRefGoogle Scholar
  41. 41.
    Morks M F, Fahim N F, and Kobayashi A, Appl Surf Sci 255 (2008) 3426.CrossRefGoogle Scholar
  42. 42.
    Li H, Li Z-X, Li H, Wu Y-Z, and Wei Q, Mater Des 30 (2009) 3920.CrossRefGoogle Scholar
  43. 43.
    Zhang Q, Chen J, Feng J, Cao Y, Deng C, and Zhang X, Biomaterials 24 (2003) 4741.CrossRefGoogle Scholar
  44. 44.
    Cheang P, and Khor K A, Biomaterials 17 (1996) 537.CrossRefGoogle Scholar
  45. 45.
    Li H, Khor K A, and Cheang P, Biomaterials 23 (2002) 2105.CrossRefGoogle Scholar
  46. 46.
    Mohammadi Z, Ziaei-Moayyed A A, and Sheikh-Mehdi Mesgar A, J Mater Process Technol 194 (2007) 15.CrossRefGoogle Scholar
  47. 47.
    Wang B C, Chang E, Lee T M, and Yang C Y, J Biomed Mater Res 29 (1995) 1483.CrossRefGoogle Scholar
  48. 48.
    Aebli N, Krebs J, Stich H, Schawalder P, Walton M, and Schwenke D, J Biomed Mater Res Part A 66A (2003) 356.CrossRefGoogle Scholar
  49. 49.
    Fernandez J, Gaona M, and Guilemany J M, J Therm Spray Technol 16 (2007) 220.CrossRefGoogle Scholar
  50. 50.
    Lima R S, Kucuk A, and Berndt C C, Surf Coat Technol 135 (2001) 166.CrossRefGoogle Scholar
  51. 51.
    Tercero J E, Namin S, Lahiri D, Balani K, Tsoukias N, and Agarwal A, Mater Sci Eng C 29 (2009) 2195.CrossRefGoogle Scholar
  52. 52.
    Wang B C, Chang E, Lee T M, and Yang C Y, J Biomed Mater Res 29 (1995) 1483.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Amardeep Singh
    • 1
  • Gurbhinder Singh
    • 2
  • Vikas Chawla
    • 3
  1. 1.I. K. Gujral Punjab Technical UniversityKapurthalaIndia
  2. 2.Guru Kashi UniversityTalwandi SaboIndia
  3. 3.Ferozepur College of Engineering and TechnologyFerozepurIndia

Personalised recommendations