Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2485–2496 | Cite as

First Report on the Deformation Mechanism Mapping of First and Second Generation Ni-Based Single Crystal Super Alloys

Review Paper
  • 148 Downloads

Abstract

Nickel based single crystal super alloys are widely used as aircraft engine blades and are still in the process of development to improve the high temperature capabilities. The typical microstructure of these alloys consists of gamma phase as the matrix strengthened by the gamma prime precipitates. In recent times, addition of refractory metals like Re are tried to improve the creep strength. The first generation of these alloys does not contain any such additions. The second generation of the alloys contains around 3–6% Re. These additions and modifications have been found to improve the temperature capability of the CMSX, though there are limitations in their addition. In this article the microstructural developments, the metallurgical and high temperature behavior of the first and second generation NiSX family subjected to stress annealing, are discussed from engineering point of view. Based on experimental findings reported in literature, deformation maps illustrating the different mechanisms over a wide range of temperature and stress levels for the first and second generation alloys are presented.

Keywords

NiSX Gamma-prime precipitate Rafting Particle shearing Deformation Mapping 

Notes

Acknowledgement

The authors are grateful to Prof. B. Bhaskar Ramamurthi, Director, IIT Madras for his kind permission to publish this paper. We wish thank Dr. S. Madhavan for all his support in preparing the manuscript.

References

  1. 1.
    Biermann H, Tetzlah U, von Grossmann, and Mughrabi H, Scr Mater 43 (2000) 807.CrossRefGoogle Scholar
  2. 2.
    Caron P, and Khan T, Mater Sci Eng 61 (1983) 173.CrossRefGoogle Scholar
  3. 3.
    Chatterjee D, Hazari N, Das N, and Mithra R, Mater Sci Eng A 528 (2010) 604.Google Scholar
  4. 4.
    Cheng K Y, Jo C Y, Jin T, and Hu Z Q, Mater Des 31 (2010) 968.CrossRefGoogle Scholar
  5. 5.
    Diologent F, and Caron P, Mater Sci Eng A 385 (2004) 245.CrossRefGoogle Scholar
  6. 6.
    Fahrmann M, and Wolf J G, Mater Sci Eng A 210 (1996) 8.CrossRefGoogle Scholar
  7. 7.
    Giamei A F, and Anton D L, Metall Trans 16A (1985) 1997.CrossRefGoogle Scholar
  8. 8.
    Grosdidier T, Hazotte A, and Simon A, Mater Sci Eng A 256 (1998) 183.CrossRefGoogle Scholar
  9. 9.
    Safari J, and Nategh S, Mater Sci Eng A 499 (2009) 445.CrossRefGoogle Scholar
  10. 10.
    Kamaraj M, Serin K, Kolbe M, and Eggeler G, Mater Sci Eng A 319 (2001) 796.CrossRefGoogle Scholar
  11. 11.
    Kamaraj M, Sadhana 28 (2003) 115.CrossRefGoogle Scholar
  12. 12.
    Kamaraj M, Mayr C, Kolbe M, and Eggeler G, Scr Mater 38 (1998) 589.CrossRefGoogle Scholar
  13. 13.
    Lang C H, Schneider W, and Mughrabi H, Acta Metall Mater 43 (1995) 1751.CrossRefGoogle Scholar
  14. 14.
    Luo Y S, Liu S Z, and Sun F L, Mater Rev 8 (2005) 55.Google Scholar
  15. 15.
    Maclachlan D W, and Knowles D M, Metall Mater Trans A 31A (2000) 1401.CrossRefGoogle Scholar
  16. 16.
    Masakazu Saito T, Aoyama K, and Hidaka H, Tamaki Scr Mater 34 (1996) 1189.CrossRefGoogle Scholar
  17. 17.
    Veron M, Brechet Y, and Francois L, Super Alloy (1996) 181. Google Scholar
  18. 18.
    Nabarro F R N, and de Viliersv H L, The Physics of Creep, Taylor and Francis, London (1995).Google Scholar
  19. 19.
    Nabarro F R N, Cress C M, and Kotschy P, Act Mater 44 (1996) 3189.CrossRefGoogle Scholar
  20. 20.
    Nathal M V, and Ebert L J, Metall Trans A 16A (1985) 1849.CrossRefGoogle Scholar
  21. 21.
    Nathal M V, and Ebert L J, Metall Trans A 16A (1985) 427.CrossRefGoogle Scholar
  22. 22.
    Nathal M V, Metall Trans. 18A (1987) 1961.Google Scholar
  23. 23.
    Pamela H, Berglin L, and Jansson C Scr Mater 40 (1999) 229.Google Scholar
  24. 24.
    Pollock T M, and Argon A S. Acta Metall Mater 40 (1992) 1.CrossRefGoogle Scholar
  25. 25.
    Pollock T M, and Argon A S. Acta Metall Mater 42 (1994) 1859.CrossRefGoogle Scholar
  26. 26.
    McKay R A, and Ebert E J, Metall Trans 16A (1985) 1969.CrossRefGoogle Scholar
  27. 27.
    Schneider W, and Mughrabi H, Proceedings of the 5th International Conference on Creep and Fracture of Engineering Materials and Structures (eds: B. Wilshire and R.W. Evans) The Institute of Materials, London, 1993 209.Google Scholar
  28. 28.
    Schneider W, Hammer J, and Mughrabi H, Super Alloys (1992) 589.Google Scholar
  29. 29.
    Shi L, Yu J J, Cui C Y, and Sun X F Mater Sci Eng A 635 (2015) 50.Google Scholar
  30. 30.
    Tian S, Jiang C, Zhang S, Shang L, Shu D, and Xie J, Mater Sci Eng A 613 (2014) 184.CrossRefGoogle Scholar
  31. 31.
    Sugui T, Su Y, Qian B J, Yu X F, Liang F S, and Li A N, Mater Des 37 (2012) 236.Google Scholar
  32. 32.
    Sugui T, Zeng Z, Fushun L, Zhang C, and Li C, Mater Sci Eng A 543 (2012) 104.CrossRefGoogle Scholar
  33. 33.
    Tien J K, and Cobley S M, Metall Trans 2 (1971) 543.CrossRefGoogle Scholar
  34. 34.
    Tian S, Zhang J H, Xu Y B, Hu Z Q, Yang H C, and Wu X, Metall Trans A 32 (2001) 2947.CrossRefGoogle Scholar
  35. 35.
    Tian S, Wang M G, Yu H C, Yu X F, Li T, and Qian B J, Mater Sci Eng A 527 (2010) 4458.CrossRefGoogle Scholar
  36. 36.
    Tinga T, Brekelmans W A M, and Geers M G D, Comput Mater Sci 47 (2009) 471.CrossRefGoogle Scholar
  37. 37.
    Yuan Y, Kawagishi K, Koizumi Y, Kobayashi T, Yokokawa T, and Harada H, Mater Sci Eng A 608 (2014) 95.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations