Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2563–2570 | Cite as

Optimization of Stirring Parameters Using CFD Simulations for HAMCs Synthesis by Stir Casting Process

Technical Paper

Abstract

Hybrid aluminum matrix composites (HAMCs) are capable to meet recent demands of advanced engineering applications due to its tunable mechanical properties and lower cost. Stir casting is one of the prominent and economical method for processing of continuous reinforced HAMCs. In this method, flow pattern is the key factor for distribution of particles in the molten metal. Effective flow pattern can be achieved by optimizing stirring parameters i.e. blade angle, impeller size and stirring speed. However, complete study and optimization of flow is a challenge for research community. Finite element method simulation along with optimization technique is one of the effective combination to guide experimental research. In this paper, computational fluid dynamics has been used to simulate fluid flow during stir casting, whereas optimization of stirring parameters is done by Grey Taguchi method. Optimized parameters have been used for experimental synthesis of HAMCs. Furthermore, optical micrograph and hardness confirms about the uniform dispersion of reinforcements. These results may guide the researchers for the preparation of HAMCs with uniform particle distribution by stir casting route for industrial applications.

Keywords

Hybrid aluminum matrix composite Stir casting Stirring parameter Flow behavior Uniform distribution CFD Simulation Grey–Taguchi method 

Abbreviations

H

Height of crucible

H1

Height of cylindrical portion

H2

Height of bottom curved portion

D1

Top diameter of crucible

D2

Bottom diameter of crucible

d

Impeller blade diameter

α

Impeller blade angle

S1

Area of stagnant zone in cylinderical part of the crucible

S2

Area of dead zone in the bottom part of the crucible

SC

Area of cylinder part of the crucible

SB

Area of in bottom part of the crucible

S/N

Signal to noise

DOF

Degree of freedom

References

  1. 1.
    Singh J, and Chauhan A, J Mater Res Technol 5 (2016) 159.CrossRefGoogle Scholar
  2. 2.
    Ravi K R, Sreekumar V M, Pillai R M, Mahto C, Amaranathan K R, Arul Kumar R, and Pai B C, Mater Des 28 (2007) 871.Google Scholar
  3. 3.
    David Raja Selvam J, Robinson Smart D S, and Dinaharan I, Mater Des 49 (2013) 28.CrossRefGoogle Scholar
  4. 4.
    Oluwatosin M, Keneth K, and Heath L, Integr Med Res 4 (2015) 434.Google Scholar
  5. 5.
    Mahendra K V, J Compos Mater 44 (2010) 989.CrossRefGoogle Scholar
  6. 6.
    Baradeswaran A, and Elaya Perumal A, Compos Part B Eng 54 (2013) 146.CrossRefGoogle Scholar
  7. 7.
    Toptan F, Kilicarslan A, Karaaslan A, Cigdem M, and Kerti I, Mater Des 31 (2010) S87.CrossRefGoogle Scholar
  8. 8.
    Mohanty R M, Balasubramanian K, and Seshadri S K. Mater Sci Eng A 498 (2008) 42.CrossRefGoogle Scholar
  9. 9.
    Topcu I, Gulsoy H O, Kadioglu N, and Gulluoglu A N, J Alloys Compd 482 (2009) 516.CrossRefGoogle Scholar
  10. 10.
    Mohammad Sharifi E, Karimzadeh F, and Enayati M H, Mater Des 32 (2011) 3263.CrossRefGoogle Scholar
  11. 11.
    Kumar P R S, Kumaran S, Rao T S, and Natarajan S, Mater Sci Eng A 527 (2010) 1501.CrossRefGoogle Scholar
  12. 12.
    Zahi S, and Daud A R, Mater Des, 32 (2011) 1337.CrossRefGoogle Scholar
  13. 13.
    Kok M, J Mater Process Technol 161 (2005) 381.CrossRefGoogle Scholar
  14. 14.
    Michael Rajan H B, Ramabalan S, Dinaharan I, and Vijay S J, Mater Des 44 (2013) 438.CrossRefGoogle Scholar
  15. 15.
    Su H, Gao W, Zhang H, Liu H, Lu J, and Lu Z, J Manuf Sci Eng 132 (2010) 061007.CrossRefGoogle Scholar
  16. 16.
    Rohatgi P K, Sobczak J, Asthana R, and Kim J K, Mater Sci Eng A 252 (1998)98.CrossRefGoogle Scholar
  17. 17.
    Prabu S B, Karunamoorthy L, Kathiresan S, and Mohan B, J Mater Process Technol 171 (2006) 268.CrossRefGoogle Scholar
  18. 18.
    Naher S, Brabazon D, and Looney L, J Mater Process Technol 144 (2003) 567.CrossRefGoogle Scholar
  19. 19.
    Hashim J, Looney L, and Hashmi M S J, J Mater Process Technol 123 (2002) 258.CrossRefGoogle Scholar
  20. 20.
    Hosseini S H, Ahmadi G, Rahimi R, Zivdar M, and Esfahany M N, Powder Technol 200 (2010) 202.CrossRefGoogle Scholar
  21. 21.
    Panneerselvam R, Savithri S, and Surender G D, Chem Eng Sci 64 (2009) 1119.CrossRefGoogle Scholar
  22. 22.
    Haq A N, Marimuthu P, and Jeyapaul R, Int J Adv Manuf Technol 37 (2008) 250.CrossRefGoogle Scholar
  23. 23.
    Sahu M K, Valarmathi A, Baskaran S, Anandakrishnan V, and Pandey R K, Proc Inst Mech Eng Part B J Eng Manuf 228 (2014) 1501.CrossRefGoogle Scholar
  24. 24.
    Baradeswaran A, Vettivel S C, Elaya Perumal A, Selvakumar N, and Franklin Issac R, Mater Des 63 (2014) 620.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.National Institute of Technology RaipurRaipurIndia

Personalised recommendations