Skip to main content
Log in

Optimization of Stirring Parameters Using CFD Simulations for HAMCs Synthesis by Stir Casting Process

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Hybrid aluminum matrix composites (HAMCs) are capable to meet recent demands of advanced engineering applications due to its tunable mechanical properties and lower cost. Stir casting is one of the prominent and economical method for processing of continuous reinforced HAMCs. In this method, flow pattern is the key factor for distribution of particles in the molten metal. Effective flow pattern can be achieved by optimizing stirring parameters i.e. blade angle, impeller size and stirring speed. However, complete study and optimization of flow is a challenge for research community. Finite element method simulation along with optimization technique is one of the effective combination to guide experimental research. In this paper, computational fluid dynamics has been used to simulate fluid flow during stir casting, whereas optimization of stirring parameters is done by Grey Taguchi method. Optimized parameters have been used for experimental synthesis of HAMCs. Furthermore, optical micrograph and hardness confirms about the uniform dispersion of reinforcements. These results may guide the researchers for the preparation of HAMCs with uniform particle distribution by stir casting route for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

H :

Height of crucible

H 1 :

Height of cylindrical portion

H 2 :

Height of bottom curved portion

D 1 :

Top diameter of crucible

D 2 :

Bottom diameter of crucible

d :

Impeller blade diameter

α :

Impeller blade angle

S 1 :

Area of stagnant zone in cylinderical part of the crucible

S 2 :

Area of dead zone in the bottom part of the crucible

S C :

Area of cylinder part of the crucible

S B :

Area of in bottom part of the crucible

S/N:

Signal to noise

DOF:

Degree of freedom

References

  1. Singh J, and Chauhan A, J Mater Res Technol 5 (2016) 159.

    Article  Google Scholar 

  2. Ravi K R, Sreekumar V M, Pillai R M, Mahto C, Amaranathan K R, Arul Kumar R, and Pai B C, Mater Des 28 (2007) 871.

    Google Scholar 

  3. David Raja Selvam J, Robinson Smart D S, and Dinaharan I, Mater Des 49 (2013) 28.

    Article  Google Scholar 

  4. Oluwatosin M, Keneth K, and Heath L, Integr Med Res 4 (2015) 434.

    Google Scholar 

  5. Mahendra K V, J Compos Mater 44 (2010) 989.

    Article  Google Scholar 

  6. Baradeswaran A, and Elaya Perumal A, Compos Part B Eng 54 (2013) 146.

    Article  Google Scholar 

  7. Toptan F, Kilicarslan A, Karaaslan A, Cigdem M, and Kerti I, Mater Des 31 (2010) S87.

    Article  Google Scholar 

  8. Mohanty R M, Balasubramanian K, and Seshadri S K. Mater Sci Eng A 498 (2008) 42.

    Article  Google Scholar 

  9. Topcu I, Gulsoy H O, Kadioglu N, and Gulluoglu A N, J Alloys Compd 482 (2009) 516.

    Article  Google Scholar 

  10. Mohammad Sharifi E, Karimzadeh F, and Enayati M H, Mater Des 32 (2011) 3263.

    Article  Google Scholar 

  11. Kumar P R S, Kumaran S, Rao T S, and Natarajan S, Mater Sci Eng A 527 (2010) 1501.

    Article  Google Scholar 

  12. Zahi S, and Daud A R, Mater Des, 32 (2011) 1337.

    Article  Google Scholar 

  13. Kok M, J Mater Process Technol 161 (2005) 381.

    Article  Google Scholar 

  14. Michael Rajan H B, Ramabalan S, Dinaharan I, and Vijay S J, Mater Des 44 (2013) 438.

    Article  Google Scholar 

  15. Su H, Gao W, Zhang H, Liu H, Lu J, and Lu Z, J Manuf Sci Eng 132 (2010) 061007.

    Article  Google Scholar 

  16. Rohatgi P K, Sobczak J, Asthana R, and Kim J K, Mater Sci Eng A 252 (1998)98.

    Article  Google Scholar 

  17. Prabu S B, Karunamoorthy L, Kathiresan S, and Mohan B, J Mater Process Technol 171 (2006) 268.

    Article  Google Scholar 

  18. Naher S, Brabazon D, and Looney L, J Mater Process Technol 144 (2003) 567.

    Article  Google Scholar 

  19. Hashim J, Looney L, and Hashmi M S J, J Mater Process Technol 123 (2002) 258.

    Article  Google Scholar 

  20. Hosseini S H, Ahmadi G, Rahimi R, Zivdar M, and Esfahany M N, Powder Technol 200 (2010) 202.

    Article  Google Scholar 

  21. Panneerselvam R, Savithri S, and Surender G D, Chem Eng Sci 64 (2009) 1119.

    Article  Google Scholar 

  22. Haq A N, Marimuthu P, and Jeyapaul R, Int J Adv Manuf Technol 37 (2008) 250.

    Article  Google Scholar 

  23. Sahu M K, Valarmathi A, Baskaran S, Anandakrishnan V, and Pandey R K, Proc Inst Mech Eng Part B J Eng Manuf 228 (2014) 1501.

    Article  Google Scholar 

  24. Baradeswaran A, Vettivel S C, Elaya Perumal A, Selvakumar N, and Franklin Issac R, Mater Des 63 (2014) 620.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M.K., Sahu, R.K. Optimization of Stirring Parameters Using CFD Simulations for HAMCs Synthesis by Stir Casting Process. Trans Indian Inst Met 70, 2563–2570 (2017). https://doi.org/10.1007/s12666-017-1119-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1119-5

Keywords

Navigation