Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2537–2546 | Cite as

Processing and Evaluation of Mechanical Properties of Sugarcane Fiber Reinforced Natural Composites

Technical Paper

Abstract

In the present work, the natural composites based on sugarcane bagasse fiber and/or coconut shell powder were processed using hand lay-up technique. The matrix selected was polyester. Three different types of composites were considered: polyester matrix + sugarcane fiber, polyester matrix + sugarcane fiber + metal mesh and polyester matrix + sugarcane fiber + coconut shell filler. The sugarcane fibers were used in three forms: (1) chemically treated by NaOH, (2) chemically treated by HCl, and (3) untreated condition. In total, 9 types of composites were developed and studied for tensile, flexural and impact properties. The fracture surface of the tensile and flexural test samples was examined with the aid of scanning electron microscope to understand the bonding characteristics and the mode of failure. The key-findings from the present work are: (1) the composites reinforced with the NaOH treated sugarcane fiber and the metal mesh show superior tensile and impact properties whereas the composites reinforced with the NaOH treated sugarcane fiber show the best flexural properties, (2) NaOH treatment of sugarcane fibres has a significant effect in improving the mechanical properties by surface modification of fibres through OH functional groups. In contrast, HCl treatment of sugarcane deteriorates the surface of the sugarcane by absorbing the electrons. The damaged surface results in weak bonding causing poor mechanical properties, (3) From the SEM analysis of the surface of the sugarcane fiber, it may be concluded that the surface condition of the sugarcane fibres decide the bonding with the matrix. The fiber pull-outs and porosities are less in the NaOH treated sugarcane reinforced composites. The fiber failure is the main mechanism of failure in the tensile test whereas the fiber debonding from the matrix is the main source of failure in the flexural test.

Keywords

Polymer matrix composites Coconut shell filler Sugarcane fiber Mechanical properties Fractography 

References

  1. 1.
    Pan Y, and Zhong Z, Mech Mater 85 (2015) 7.CrossRefGoogle Scholar
  2. 2.
    Andiç-Çakir Ö, Sarikanat M, Tüfekçi H B, Demirci C, and Erdoğan Ü H, Compos Part B 61 (2014) 49.CrossRefGoogle Scholar
  3. 3.
    Essabir H, Bensalah M O, Rodrigue D, Bouhfid R, and Qaiss A, Mech Mater 93 (2016) 134.CrossRefGoogle Scholar
  4. 4.
    Sahari J, and Sapuan S M, Rev Adv Mater Sci 30 (2011) 166.Google Scholar
  5. 5.
    Ratna Prasad A V, and Mohana Rao K, Mater Des 32 (2011) 4658.CrossRefGoogle Scholar
  6. 6.
    Väisänen T, Haapala A, Lappalainen R, and Tomppo L, Waste Manag 54 (2016) 62.CrossRefGoogle Scholar
  7. 7.
    Keck S, and Fulland M, Eng Fract Mech 167 (2016) 201.CrossRefGoogle Scholar
  8. 8.
    Alavudeen A, Rajini N, Karthikeyan S, Thiruchitrambalam M, and Venkateshwaren N, Mater Des 66 (2015) 246.CrossRefGoogle Scholar
  9. 9.
    Dhakal H N, Zhang Z Y, and. Richardson M O W, Compos Sci Technol 67 (2007) 1674.CrossRefGoogle Scholar
  10. 10.
    Granda LA, Espinach F X, Méndez J A, Tresserras J, Delgado-Aguilar M, and Mutjé P, Compos Part B 92 (2016) 332.CrossRefGoogle Scholar
  11. 11.
    Oksman K, Mathew A P, Långström R, Nyström B, and Joseph K, Compos Sci Technol 69 (2009) 1847.CrossRefGoogle Scholar
  12. 12.
    Ridzuan M J M, Abdul Majid M S, Afendi M, Aqmariah Kanafiah S N, Zahri J M, and Gibson A G, Mater Des 89 (2016) 839.CrossRefGoogle Scholar
  13. 13.
    Pickering K L, and Tan Minh Le, Compos Part B 85 (2016) 123.CrossRefGoogle Scholar
  14. 14.
    Berthet M-A, Gontard N, and Angellier-Coussy H, Compos Sci Technol 117 (2015) 386.CrossRefGoogle Scholar
  15. 15.
    El-Abbassi F E, Assarar M, Ayad R, Lamdouar N, Compos Struct 133 (2015) 451.CrossRefGoogle Scholar
  16. 16.
    Hassan S B, Oghenevweta J E, Aigbodion V S, Compos Part B 43 (2012) 2230.CrossRefGoogle Scholar
  17. 17.
    Milanese A C, Cioffi M O H, and Voorwald H J C, Compos Part B 43 (2012) 2843.CrossRefGoogle Scholar
  18. 18.
    Mulinari D R, Voorwald H J C, Cioffi M O H, Da Silva M L C P, da Cruz T G, Saron C, Compos Sci Technol 69 (2009) 214.CrossRefGoogle Scholar
  19. 19.
    Uthayakumar M, Manikandan V, Rajini N, and Jeyaraj P, Mater Des 64 (2014) 270.CrossRefGoogle Scholar
  20. 20.
    Haameem J A, Abdul Majid M S, Afendi M, Marzuki H F A, Ahmad Hilmi E, Fahmi I, Gibson A G, Compos Struct 144 (2016) 138.CrossRefGoogle Scholar
  21. 21.
    Manshor M R, Anuar H, Nur Aimi M N,  Ahmad Fitrie M I, Wan Nazri W B, Sapuan S M, El-Shekeil Y A, and Wahit M U, Mater Des 59 (2014) 279.CrossRefGoogle Scholar
  22. 22.
    Hajiha H, and Sain M, Biofiber Reinf Compos Mater (2015) 525.Google Scholar
  23. 23.
    Anuar H, and Zuraida A, Compos Part B 42 (2011) 462.CrossRefGoogle Scholar
  24. 24.
    Andrzej Bledzki K, Abdullah Mamun A, and Jurgen Volk, Compos Sci Technol 70 (2010) 840.CrossRefGoogle Scholar
  25. 25.
    Wu Q, Chi K, Wu Y, and Lee S, Mater Des 60 (2014): 334.CrossRefGoogle Scholar
  26. 26.
    Brodowsky H, and Mäder E, Compos Sci Technol 72 (2012) 1160.CrossRefGoogle Scholar
  27. 27.
    Ramachandran M, Bansal S, and Raichurkar P, Perspect Sci 8 (2016) 313.CrossRefGoogle Scholar
  28. 28.
    Bozaci E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E, and Tavman I, Compos Part B 45 (2013) 565.CrossRefGoogle Scholar
  29. 29.
    Ramesh M, Palanikumar K, and Hemachandra Reddy K, Trans Indian Inst Met 69 (2016) 1851.CrossRefGoogle Scholar
  30. 30.
    Ramesh M, Palanikumar K, Hemachandra Reddy K, Compos Part B 48 (2013) 1.CrossRefGoogle Scholar
  31. 31.
    Hasselbruch H, Von Hehl A, and Zoch H-W, Mater Des 66 (2015) 429.CrossRefGoogle Scholar
  32. 32.
    Keerthika B, Umayavalli M, Jeyalalitha T, Krishnaveni N, Ecotoxicol Environ Safe 130 (2013) 1.CrossRefGoogle Scholar
  33. 33.
    Li X, Tabil L G, and Panigrahi S, J Polym Environ 15 (2007) 25.CrossRefGoogle Scholar
  34. 34.
    Vilay V, Mariatti M, Taib R M, and Todo M, Compos Sci Technol 68 (2008) 631.CrossRefGoogle Scholar
  35. 35.
    Venkata Krishna K, and Kanny K, Compos Part B Eng 104 (2016) 111.CrossRefGoogle Scholar
  36. 36.
    Rodrigues E F, Maia T F, Mulinari D R, Procedia Eng 10 (2011) 2348.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSRM UniversityKattankulathur, KanchipuramIndia
  2. 2.Defence R&D OrganizationBangaloreIndia

Personalised recommendations