Advertisement

Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2509–2527 | Cite as

Corrosion Behavior of Hard Boride Layer Produced on Nimonic 80A-Alloy by Gas Boriding

  • N. Makuch
  • M. Kulka
  • D. Mikołajczak
Technical Paper
  • 174 Downloads

Abstract

The gas boriding in N2–H2–BCl3 atmosphere was applied in order to produce a wear resistant surface layer on Nimonic 80A-alloy samples. The microstructure, microhardness and corrosion resistance of the boride layer were investigated. The produced layer consisted mainly of the compact boride zone (with average thickness 71 μm), including the mixture of nickel and chromium borides of high hardness (up to 1861 HV). In order to evaluate the corrosion behavior, the two methods of corrosion tests were used: potentiodynamic corrosion test in 5% NaCl solution and immersion corrosion test in a boiling solution of H2O, H2SO4 and Fe2(SO4)3. The results showed that gas boriding could provide the excellent corrosion resistance if the whole surface of a Nimonic 80A-alloy sample was covered by the continuous boride layer. Otherwise, as a consequence of selective boriding, the significant difference in electrochemical potentials caused an accelerated uniform corrosion of the base material.

Graphical Abstract

Keywords

Gas boriding Nimonic 80A-alloy Borides Microstructure Hardness Electrochemical corrosion resistance 

Notes

Acknowledgements

This work has been financially supported by the National Science Centre in Poland as a part of the UMO-2012/07/N/ST8/03744 project. The authors wish to thank Ph.D. A. Bartkowska and M.Sc. Eng. J. Jakubowski from Institute of Materials Science and Engineering for their help and cooperation during the realization of this work.

References

  1. 1.
    Craig B D, and Anderson D B, Handbook of Corrosion Data, ASM International, Ohio (1995).Google Scholar
  2. 2.
    Cramer S D, and Covino B S, ASM Handbook. Volume 13B Corrosion: Materials, ASM International, Ohio (2005).Google Scholar
  3. 3.
    Eliasen K M, Christiansen T L, and Somers M A J, Surf Eng 26 (2010) 248.CrossRefGoogle Scholar
  4. 4.
    Sudha C, Anand R, Thomas Paul V, Saroja S, and Vijayalakshmi M, Surf Coat Technol 226 (2013) 92.CrossRefGoogle Scholar
  5. 5.
    Aw P K, Batchelor A W, and Loh N L, Surf Coat Technol 89 (1997) 70.CrossRefGoogle Scholar
  6. 6.
    Borowski T, Brojanowska A, Kost M, Garbacz H, and Wierzchoń T, Vacuum 83 (2009) 1489.CrossRefGoogle Scholar
  7. 7.
    Ozbek I, Akbulut H, Zeytin S, Bindal C, and Ucisik A H, Surf Coat Technol 126 (2000) 166.CrossRefGoogle Scholar
  8. 8.
    Muhammad W, Hussain K, Tauqir A, Ul Haq A, and Khan A Q, Metall Mater Trans A 30A (1999) 670.CrossRefGoogle Scholar
  9. 9.
    Lou D C, Akselsen O M, Solberg J K, Onsoien M I, Berget J, and Dahl N, Surf Coat Technol 200 (2006) 3582.CrossRefGoogle Scholar
  10. 10.
    Mu D, Shen B I, Yang C, and Zhao X, Vacuum 83 (2009) 1481.CrossRefGoogle Scholar
  11. 11.
    Gunes I, and Kayali Y, Mater Des 53 (2014) 577.CrossRefGoogle Scholar
  12. 12.
    Ueda N, Mizukoshi T, Demizu K, Sone T, Ikenaga A, and Kawamoto M, Surf Coat Technol 126 (2000) 25.CrossRefGoogle Scholar
  13. 13.
    Aytekin H, and Akcin Y, Mater Des 50 (2013) 515.CrossRefGoogle Scholar
  14. 14.
    Petrova R S, Suwattananont N, and Samardzic V, J Mater Eng Perform 17 (2008) 340.CrossRefGoogle Scholar
  15. 15.
    Lou D C, Solberg J K, Akselsen O M, and Dahl N, Mater Chem Phys 115 (2009) 239.CrossRefGoogle Scholar
  16. 16.
    Sista V, Kahvecioglu O, Kartal G, Zeng Q Z, Kim J H, Eryilmaz O L, and Erdemir A, Surf Coat Technol 215 (2013) 452.CrossRefGoogle Scholar
  17. 17.
    Anthymidis K G, Zinoviadis P, Roussos D, and Tsipas D N, Mater Res Bull 37 (2002) 515.CrossRefGoogle Scholar
  18. 18.
    Kulka M, Makuch N, and Popławski M, Surf Coat Technol 244 (2014) 78.CrossRefGoogle Scholar
  19. 19.
    Makuch N, and Kulka M, Appl Surf Sci 314 (2014) 1007.CrossRefGoogle Scholar
  20. 20.
    Makuch N, Kulka M, and Piasecki A, Surf Coat Technol 276 (2015) 440.CrossRefGoogle Scholar
  21. 21.
    Makuch N, and Kulka M, Ceram Int 42 (2016) 3275.CrossRefGoogle Scholar
  22. 22.
    Majumdar J D, and Manna I, Metall Mater Trans A 43A (2012) 3786.CrossRefGoogle Scholar
  23. 23.
    Rodriguez G P, Garcia I, and Damborenea J, Oxid Met 58 (2002) 235.CrossRefGoogle Scholar
  24. 24.
    Cooper K P, Slebodnick P, and Thomas E D, Mater Sci Eng A 206 (1996) 138.CrossRefGoogle Scholar
  25. 25.
    Kulka M, Dziarski P, Makuch N, Piasecki A, and Miklaszewski A, Appl Surf Sci 284 (2013) 757.CrossRefGoogle Scholar
  26. 26.
    Makuch N, Piasecki A, Dziarski P, and Kulka M, Opt Laser Technol 75 (2015) 229.CrossRefGoogle Scholar
  27. 27.
    ASTM G28 Norm, Standard Test Methods of Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys, ASTM International (2003).Google Scholar
  28. 28.
    ASTM G61-86 Norm, 2014, Standard Test Method for Conducting Cyclic potentiodynamic polarization Measurements for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys, ASTM International, West Conshohocken (2014).Google Scholar
  29. 29.
    Aspden R G, Economy G, Pement F W, and Wilson I L, Metall Trans 3 (1972) 2691.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations