Skip to main content

Advertisement

Log in

Modelling Corrosion Behavior of Friction Stir Processed Aluminium Alloy 5083 Using Polynomial: Radial Basis Function

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Aluminium alloy 5083, widely used in marine applications, undergoes accelerated corrosion in sea water due to the aggressive reaction of chloride ions with the secondary phase particles and other intermetallics present in the alloy matrix. The corrosion rate of the alloy is also influenced by the temperature difference between the alloy and its environment. Friction stir processing (FSP) is a recent solid state processing technique for improving the surface properties of metals and alloys. In this study, an attempt has been made to explore the possibility of improving the corrosion resistance of AA5083 by FSP. FSP trials were performed by varying the tool rotation speed, tool traverse speed and shoulder diameter of the tool, as per face centered central composite design. The corrosion potential and the corrosion rate of friction stir processed AA5083 was studied using potentiodynamic polarization studies, at three different temperatures. Mathematical models based on polynomial—radial basis function were developed and used to study the effect of process parameters on the corrosion potential and the corrosion rate of friction stir processed AA5083. FSP resulted in refinement of the grain structure, dispersion and partial dissolution of secondary phase particles in the matrix, which increased the corrosion resistance of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bailey J C, Porter F C, Pearson A W, and Jarman R A, 4.1 - Aluminium and Aluminium Alloys, Butterworth-Heinemann, Oxford (1994).

  2. Jafarzadeh K, Shahrabi T, Hadavi S M M, and Hosseini M G, Anti-Corros Methods Mater 56 (2009) 35.

    Article  Google Scholar 

  3. Mishra R S, Ma Z, and Charit I, Mater Sci Eng A 341 (2003) 307.

    Article  Google Scholar 

  4. Mishra R S, and Ma Z, Mater Sci Eng R 50 (2005) 1.

    Article  Google Scholar 

  5. Cui G, Ma Z, and Li S, Acta Mater 57 (2009) 5718.

    Article  Google Scholar 

  6. Ma Z, Metall Mater Trans A 39 (2008) 642.

    Article  Google Scholar 

  7. Padmanaban R, V Ratna Kishore, and Balusamy V, Procedia Eng 97 (2014) 854. doi:10.1016/j.proeng.2014.12.360.

    Article  Google Scholar 

  8. Padmanaban R, Balusamy V, and Nouranga K N, J Eng Sci Tech 10 (2015) 790.

    Google Scholar 

  9. Vaira Vignesh R, Padmanaban R, Arivarasu M, Karthick K, Sundar A A, Gokulachandran J, IOP Conference Series: Materials Science and Engineering, IOP Publishing (2016), p 012136.

  10. Vignesh R V, Padmanaban R, Arivarasu M, Karthick K P, Sundar A A, and Gokulachandran J, in International Conference on Advances in Materials and Manufacturing Applications, Bengaluru IOP Conference Series: Materials Science and Engineering 149 (2016).

  11. Smolej A, Klobčar D, Skaza B, Nagode A, Slaček E, Dragojević V, and Smolej S, Mater Sci Eng A 590 (2014) 239.

    Article  Google Scholar 

  12. Fuller C B, and Mahoney M W, Metall Mater Trans A 37 (2006) 3605.

    Article  Google Scholar 

  13. Santos T G, Lopes N, Machado M, Vilaça P, and Miranda R M, J Mater Process Technol 216 (2015) 375.

    Article  Google Scholar 

  14. Sharma V, Gupta Y, Kumar B V M, and Prakash U, Mater Manuf Process 31 (2016) 1384.

    Article  Google Scholar 

  15. Yuvaraj N, Aravindan S, Vipin, J Mater Res Technol 4 (2015) 398. doi:10.1016/j.jmrt.2015.02.006.

    Article  Google Scholar 

  16. Johannes L B, Charit I, Mishra R S, and Verma R, Mater Sci Eng A 464 (2007) 351.

    Article  Google Scholar 

  17. Hayashi J T, Menon S K, Su J Q, and McNelley T R, Key Eng Mater 443 (2010) 135.

    Article  Google Scholar 

  18. Tan L, and Allen T R, Corros Sci 52 (2010) 548.

    Article  Google Scholar 

  19. Rahimi H, Mozaffarinia R, Hojjati Najafabadi A, J Mater Sci Technol 29 (2013) 603.

    Article  Google Scholar 

  20. Mars G F, Corrosion Engineering, Mc Graw-Hill Book Company, New York (2010).

    Google Scholar 

  21. Davis J R, Corrosion of Aluminum and Aluminum Alloys, A S M International, United States of America (1999).

  22. Mishra R S, De P S, and Kumar N, Fundamental Physical Metallurgy Background for FSW/P, Springer International Publishing, Cham (2014).

    Book  Google Scholar 

  23. Vaira Vignesh R, Padmanaban R, Arivarasu M, Thirumalini S, Gokulachandran J, Ram M S S S, IOP Conference Series: Materials Science and Engineering, IOP Publishing (2016), p 012208.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmanaban Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, V.V., Ramasamy, P. Modelling Corrosion Behavior of Friction Stir Processed Aluminium Alloy 5083 Using Polynomial: Radial Basis Function. Trans Indian Inst Met 70, 2575–2589 (2017). https://doi.org/10.1007/s12666-017-1110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1110-1

Keywords

Navigation