Transactions of the Indian Institute of Metals

, Volume 70, Issue 10, pp 2571–2574 | Cite as

Enhanced Dielectric Properties in Spark Plasma Sintered Zinc Titanate Ceramics

  • B. G. Bhoopathy
  • A. Vishwath Ram
  • R. J. Rajeshwara Rao
  • P. Susila
Technical Paper


The ever increasing application of zinc titanate ceramics as a dielectric material in microwave devices and low temperature co-fired ceramics calls for the improvement in their dielectric properties. In this paper, the effect of different sintering techniques on the dielectric properties of zinc titanate have been discussed. Zinc titanate was prepared by ball milling 1:1 molar ratio of ZnO and TiO2 for 12 h and calcined at 800 °C for 2 h. The presence of ZnTiO3 and Zn2TiO4 phases were confirmed by X-ray diffraction and the dielectric properties of the sintered samples were studied using LCR meter. Samples consolidated by spark plasma sintering (SPS) showed highest densification (13% increase), higher dielectric permittivity (ɛr = 25.17) and Q factor (Q factor = 162.78) with lower loss tangent values (tanδ = 0.00614) than that of microwave sintered samples (ɛr = 21.86, Q factor = 99.08, tanδ = 0.01009) and conventionally sintered samples (ɛr = 20.54, Q factor = 60.07, tanδ = 0.01665). The fabrication time was considerably reduced for the materials prepared via SPS than that prepared by conventional route with improved properties and also the dependence of dielectric properties on density was confirmed in this research work.


Mechanical alloying Calcination Sintering Density Dielectric properties 


  1. 1.
    Dulin F H, and Rase D E, J Am Ceram Soc 43 (1960) 125.CrossRefGoogle Scholar
  2. 2.
    Kim H T, Byun J D, and Kim Y, Mater Res Bull 33 (1998) 975.CrossRefGoogle Scholar
  3. 3.
    Zhang Q L, Yang H, Zou J L, and Wang H P, Mater Lett 59 (2005) 880.CrossRefGoogle Scholar
  4. 4.
    Hou L, Hou Y D, Zhu M K, Tang J, Liu J B, and Wang H, Mater Lett 59 (2005) 197.CrossRefGoogle Scholar
  5. 5.
    Lee Y C, Huang Y L, Lee W H, and Shieu F S, Thin Solid Films 518 (2010) 7366.CrossRefGoogle Scholar
  6. 6.
    Chang Y S, Chang Y H, Chen I G, Chen G J, Chai Y L, Fang T H, and Wu S, Ceram Int 30 (2004) 2183.CrossRefGoogle Scholar
  7. 7.
    Obradovic N, Mitrovic N, and Pavlovic V, Ceram Int 35 (2009) 35.CrossRefGoogle Scholar
  8. 8.
    Lokesh B, Kaleemulla S, and Madhusudhana Rao N, Int J ChemTech Res 6 (2014) 1929.Google Scholar
  9. 9.
    Liu X, Mater Lett 80 (2012) 69.CrossRefGoogle Scholar
  10. 10.
    Zhu J, Kipkoech E R, and Lu W, J Eur Ceram Soc 26 (2006) 2027.CrossRefGoogle Scholar
  11. 11.
    Lei W, Lu W Z, Zhu J H, and Wang X H, Mater Lett 61 (2007) 4066.CrossRefGoogle Scholar
  12. 12.
    Li Y, Cheng T, and Lee Y, New J Glass Ceram 4 (2014) 1.CrossRefGoogle Scholar
  13. 13.
    Lee Y C, Yeh Y Y, and Tsai P R, J Eur Ceram Soc 32 (2012) 1725.CrossRefGoogle Scholar
  14. 14.
    Takeuchi T, Betourne E, Tabuchi M, and Kageyama H, J Mater Sci 34 (1999) 917.CrossRefGoogle Scholar
  15. 15.
    Tamari N, Tanaka T, Tanaka K, Kondoh I, Kawahara M, and Tokita M, J Ceram Soc Jpn 103 (1995) 740.CrossRefGoogle Scholar
  16. 16.
    Sundararajan T, and Balasivanandha Prabu S, Mater Chem Phys 139 (2013) 465.CrossRefGoogle Scholar
  17. 17.
    Takeuchi T, Tabuchi M, and Kageyama H, J Am Ceram Soc 82 (1999) 939.CrossRefGoogle Scholar
  18. 18.
    Licheri R, Fadda S, Orru R, Cao G, and Buscaglia V, J Eur Ceram Soc 27 (2007) 2245.CrossRefGoogle Scholar
  19. 19.
    Luo J, Ma S Y, Cheng L, Song H S, and Li W Q, Mater Lett 138 (2015) 100.CrossRefGoogle Scholar
  20. 20.
    Reddy K R, Nakata K, and Ochiai T, J Nanosci Nanotechnol 10 (2010) 7951.CrossRefGoogle Scholar
  21. 21.
    Lines M E, and Glass A M, Principle and Application of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1977).Google Scholar
  22. 22.
    Bobowska I, Opasinska A, Wypych A, and Wojciechowski P, Mater Chem Phys 134 (2012) 87.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, College of Engineering GuindyAnna UniversityChennaiIndia

Personalised recommendations