Microstructural Characterization and Mechanical Properties of Diffusion Bonded Ti–Ni In Situ Metal Intermetallic Laminates

  • N. Thiyaneshwaran
  • M. Ashfaq
  • R. Sidharth
  • G. Saikiran
  • K. Sivaprasad
  • B. Ravisankar
Technical Paper


In this work, Ti–Ni based in situ metal intermetallic laminates (MILs) were prepared and the various intermetallic phases formed were analyzed. Solid state diffusion bonding technique was adopted to produce transition joints between commercially pure Ti and Ni sheets of thickness 0.5 and 0.2 mm respectively at three different temperatures such as 770, 800 and 850 °C for various bonding duration. Microstructural characterization and phase analysis along the cross section of the bonded samples revealed the presence of three different intermetallic phases namely Ti2Ni, TiNi and TiNi3. Quasi static compression tests carried out on the MILs along the parallel and perpendicular direction revealed that the strength of the MILs increased with increase in total intermetallic layer thickness. The fractographs taken on fracture surface revealed that the failure of the MILs was mainly due to the formation of brittle cracks and de-bonding in the intermetallic layers. However, the metallic layers added strength to the MILs.


Metal intermetallic laminates Diffusion bonding Compression strength X-ray diffraction 



This work was funded by Defence Research and Development Organization (DRDO) of India under Project Sanction No. ERIP/ER/1006013/M/01/1374.


  1. 1.
    Doychak J, JoM 44 (1992) 46.CrossRefGoogle Scholar
  2. 2.
    Stoloff N S, Liu C T, and Deevi S C, Intermetallics 8 (2000) 1313.CrossRefGoogle Scholar
  3. 3.
    Yamaguchi M, Inui H, and Ito K, Acta Mater 48 (2000) 307.CrossRefGoogle Scholar
  4. 4.
    Evans A G, Lu M C, Schmauder S, and Ruhle M, Acta Mater 34 (1986) 1643.CrossRefGoogle Scholar
  5. 5.
    Dalgleish B J, Trumble K P, and Evans A G, Acta Mater 37 (1989) 1923.CrossRefGoogle Scholar
  6. 6.
    Vecchio K S, JOM 57 (2005) 25.CrossRefGoogle Scholar
  7. 7.
    Xu L, Cui Y Y, Hao Y L, and Yang R, Mater Sci Eng A 435436 (2006) 638.CrossRefGoogle Scholar
  8. 8.
    Chaudhari G P, and Acoff V L, Intermetallics 18 (2010) 472.CrossRefGoogle Scholar
  9. 9.
    AlHazaa A, Khan T I, and Haq I, Mater Charact 61 (2010) 312.CrossRefGoogle Scholar
  10. 10.
    Bataev I A, Bataev A A, Mali V I, Pavlyukova D V, Yartsev P S, and Golovin E D, Phys Met Metallogr 113 (2012) 947.CrossRefGoogle Scholar
  11. 11.
    Fan M, Domblesky J, Jin K, Qin L, Cui S, Guo X, Kim N, and Tao J, Mater Des 99 (2016) 535.Google Scholar
  12. 12.
    Aydin K, Kaya Y and Kahraman N, Mater. Des. 37 (2012) 356.CrossRefGoogle Scholar
  13. 13.
    Konieczny M, Mater. Charact. 70 (2012) 117.CrossRefGoogle Scholar
  14. 14.
    Bastin G F, and Rieck G D, Metall. Trans. 5 (1974) 1817.CrossRefGoogle Scholar
  15. 15.
    Kundu S, and Chatterjee S, Mater. Charact. 5 (2008) 631.CrossRefGoogle Scholar
  16. 16.
    Kundu S, Chatterjee S, Olson D, and Mishra B, Metall Met Trans A 38 (2007) 2053.CrossRefGoogle Scholar
  17. 17.
    Garay G E, Anselmi-Tamburini U, and Munir Z A, Acta Mater 51 (2003) 4487.CrossRefGoogle Scholar
  18. 18.
    Murray J L, ASM Handbook vol. 3, Alloy Phase Diagram, ASM International, USA (1992), p 319.Google Scholar
  19. 19.
    Hinotani S, and Ohmori Y, Trans Japan Inst Met 29 (1988) 116.CrossRefGoogle Scholar
  20. 20.
    Wagner C, Acta Matell 17 (1969) 99.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Advanced Materials Processing Laboratory, Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia
  2. 2.FARCAMT Professor, Advanced Manufacturing InstituteKing Saudi UniversityRiyadhSaudi Arabia

Personalised recommendations