Effect of Microstructure and Mechanical Properties of Al–Mg Alloy Processed by ECAP at Room Temperature and Cryo Temperature

  • Ramesh Kumar S.
  • Kondaiah Gudimetla
  • Tejaswi B.
  • Ravisankar B.
Technical Paper


This research primarily focuses on improving the strength of Al 5083 alloy by both the ECAP and Cryo ECAP methodology. Equal Channel Angular Pressing (ECAP) is one of the best technologies that enable the direct transformation of conventional macro grained metals into sub-micron, ultra-fine and nano grained materials. Fine grain size increases the strength and the fracture toughness of the material and provides the potential for super plastic deformation at moderate temperatures and at high strain rates. The microstructure evolution in Al 5083, subjected to Room Temperature ECAP and Cryo ECAP were analysed. ECAP was carried out using an optimized die with Channel angle ‘ϕ’ = 90°and corner angle ‘Ψ’ = 20° through processing route A and C up to four passes. The results were thoroughly studied using TEM, SEM, and optical microscopic images. Initially the annealed sample had the grain size of 80 µm with the equi-axed grains. In Room Temperature, the hardness values and the mechanical strength were found to be increased from 88 to 410 HV and 306 to 453 MPa after four passes in route A and in route C the strength increased from 390 to 416 MPa after four ECAP passes. Moreover, in Cryo Condition, the sample was processed up to four ECAP passes at route A and route C. The hardness of 153 HV was obtained after four passes in route C and 164 HV obtained after four passes on route A. Additionally, fracture behaviour using SEM, grain size using TEM and crystallite size by X-ray diffraction studies were analyzed. It was observed that the Cryo ECAP showed marginal improvements in mechanical properties relative to the RT ECAP in case of Al 5083.


ECAP Cryo ECAP Al 5083 Mechanical properties TEM SEM 


  1. 1.
    Musalimov R S, and Valiev R Z, Script Metall Mater 27 (1992) 1685.CrossRefGoogle Scholar
  2. 2.
    Valiev R Z, Korznikov A V, and Mulyukov R R, Mater Sci Eng 68 (1993) 141.CrossRefGoogle Scholar
  3. 3.
    Valiev R Z, Islamgaliev R K, and Alexandrov I V, Progress Mater Sci 45 (2000) 103.CrossRefGoogle Scholar
  4. 4.
    Chang S Y, Lee K S, Choi S H, and Shin D H, J Alloys Compd, 354 (2003) 216.CrossRefGoogle Scholar
  5. 5.
    Ma A, Suzuki K, Saito N, Nishida Y, Takagi M, Shigematsu I, and Iwata H, Mater Sci Eng A 399 (2005) 181.CrossRefGoogle Scholar
  6. 6.
    Xu C Z, Wang Q J, Zheng M S, Zhu J W, Li J D, Huang M Q, Jia Q M, and Du Z Z, Mater Sci Eng A 459 (2007) 303.CrossRefGoogle Scholar
  7. 7.
    Ma A, Suzuki K, Nishida Y, Saito N, Shigematsu I, Takagi M, Iwata H, Watazu A, and Imura T, Acta Mater 53 (2005) 211.CrossRefGoogle Scholar
  8. 8.
    Sabirov I, Kolednik O, Valiev R Z, and Pippan R, Acta Mater 53 (2005) 4919–4930.CrossRefGoogle Scholar
  9. 9.
    Jiang J, Ma A, Saito N, Watazu A, Lin P, and Nishida Y, Trans Nonferrous Metal Soc China 17 (2007) 509.CrossRefGoogle Scholar
  10. 10.
    Xia S H, Wang J, Wang J T, and Liu J Q, Mater Sci Eng A 493 (2008) 111–115.CrossRefGoogle Scholar
  11. 11.
    Ruslan V Z, and Langdon T G, Progress Mater Sci 51 (2006) 881–981.CrossRefGoogle Scholar
  12. 12.
    Bowen J R, Gholinia A, Roberts S M, and Prangnell P B, Mater Sci Eng A 287 (2000) 87–99.CrossRefGoogle Scholar
  13. 13.
    Horita Z, Fujinami T, and Nemoto M, Metall Mater Trans A 31A (2000) 691–701.CrossRefGoogle Scholar
  14. 14.
    Jager A, and Gatnerova V, Philos Mag Lett 92(8) (2012) 384–390.CrossRefGoogle Scholar
  15. 15.
    Segal V M, Mater Sci Eng A 338 (2002) 331–344.CrossRefGoogle Scholar
  16. 16.
    Kapoor R, and Chakravartty J K, Acta Mater 55 (2007) 5408–5418.CrossRefGoogle Scholar
  17. 17.
    Goswami R, Spanos G, Pao P S, and Holtz R L, Mater Sci Eng A 527 (2010) 1089–1095.CrossRefGoogle Scholar
  18. 18.
    Gudimetla K, Kumar S R, Ravisankar B, and Kumaran S, Trans Indian Inst Metals 68(2) (2015) 171–176.CrossRefGoogle Scholar
  19. 19.
    Jahadi R, Sedighi M, and Jahed H, Mater Sci Eng A 593 (2014) 178–184.CrossRefGoogle Scholar
  20. 20.
    Kumar S R, Ravisankar B, Sathya P, ThomasPaul V, and Jayalakshmi V, Trans Indian Inst Metals (2014) 477–484.Google Scholar
  21. 21.
    Podolskiy V, Ng H P, Psaruk I A, Tabachnikova E D, Lapovo R, J Mater Sci 49 (2014) 6803–6812.CrossRefGoogle Scholar
  22. 22.
    Higuera-Cobos O F, and Cabrera J M, Mater Sci Eng A 57 (2013) 1103–1114.Google Scholar
  23. 23.
    Goodarzy M H, Arabi H, Boutorabi M A, Seyedein S H, and Hasani Najafabadi S H, J Alloys Compd 585 (2014) 753–759.CrossRefGoogle Scholar
  24. 24.
    Surendarnath S, Sankaranarayanasamy K, and Ravisankar B, Mater Manuf Process 29(10) (2014) 1172–1178.CrossRefGoogle Scholar
  25. 25.
    Suwas S, Tóth L S, Fundenberger J.-J, Eberhardt A, and Skrotzki W, Scripta Mater 49(12) (2003) 1203–1208.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Ramesh Kumar S.
    • 1
  • Kondaiah Gudimetla
    • 2
  • Tejaswi B.
    • 1
  • Ravisankar B.
    • 2
  1. 1.School of Mechanical EngineeringSASTRA UniversityThanjavurIndia
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTrichyIndia

Personalised recommendations