Advertisement

Rapid Alloying and Nanostructuring of Silicon–Germanium Powder Mixture by Spark Plasma Sintering

  • R. Murugasami
  • P. Vivekanandhan
  • S. Kumaran
  • R. Suresh Kumar
  • T. John Tharakan
Technical Paper
  • 133 Downloads

Abstract

This work reports on rapid alloying and nano-structuring of Si80Ge20 alloy by spark plasma sintering (SPS). Elemental silicon (Si) and germanium (Ge) powders were ball milled for 10 h under optimized process parameters. The alloying and densification of Si80Ge20 powders were performed using SPS at temperature range of 900–1200 °C. X-ray diffraction and High resolution transmission electron microscope studies were done to characterize the powders and sintered SiGe alloy. Scanning electron microscope and energy dispersive spectroscopy were carried out to understand the surface morphology and elemental quantification of nanostructured SiGe alloy. The reaction kinetics at different SPS temperatures in Si80Ge20 alloying were reported. It was observed that the increase in SPS temperature up to 1200 °C simultaneously increased the Si(Ge) alloying kinetics and bulk density. Raman spectroscopy study confirmed the Si(Ge) alloying.

Keywords

Si80Ge20 alloy High energy ball milling Nanostructured materials Spark plasma sintering Electron microscopy Raman spectroscopy 

Notes

Acknowledgements

The authors would like to express their sincere thanks to the Indian Space Research Organisation (ISRO) for the financial support under RESPOND scheme (Ref.: ISRO/RES/3/652/2013-2014) and Prof. B. Karthikeyan, Department of Physics, National Institute of Technology, Tiruchirappalli for extending the Raman Spectroscopy facility.

References

  1. 1.
    Thakur S, Pandey O P and Singh K, Part Sci Technol Int J. 33 (2015) 178.CrossRefGoogle Scholar
  2. 2.
    Ayyavu V, Chandrasekar N and Sinnaeruvadi K, Part Sci Technol Int J. 34 (2016) 134.CrossRefGoogle Scholar
  3. 3.
    Chen Z G, Han G, Yang L, Cheng L and Zou J, Prog Nat Sci Mater Int. 22 (2012) 535.CrossRefGoogle Scholar
  4. 4.
    Alam H and Ramakrishna S, Nano Energy. 2 (2013) 190.CrossRefGoogle Scholar
  5. 5.
    Zhang X, Liu H, Li S, Zhang F, Lu Q and Zhang J, Mater. Lett. 123 (2014) 31.CrossRefGoogle Scholar
  6. 6.
    Thompson D, Hitchcock D, Lahwal A and Tritt T M, Emerg Mater Res. 1 (2012) 299.CrossRefGoogle Scholar
  7. 7.
    Okutani T, kabeya Y and Nagai H, J Alloy Compd. 551 (2013) 607.CrossRefGoogle Scholar
  8. 8.
    Dynys F W, Sayir A, Mackey J and Sehirlioglu A, J Alloy Compd. 604 (2014) 196.CrossRefGoogle Scholar
  9. 9.
    Favier K, Bernard-Granger G, Navone C, Soulier M, Boidot M, Leforestier J, Sion J, Tedenac JC and Ravot D, Acta Mater. 64 (2014) 429.CrossRefGoogle Scholar
  10. 10.
    Rowe D M, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton (1995) p 329.CrossRefGoogle Scholar
  11. 11.
    Suryanarayana C, Prog Mater Sci. 46 (2001) 1.CrossRefGoogle Scholar
  12. 12.
    Jacob K T, Raj S and Rannesh L, Int J Mater Res. 98 (2007) 776.CrossRefGoogle Scholar
  13. 13.
    Kawano T, Kakemoto H and Irie H, Mater Lett. 156 (2015) 94.CrossRefGoogle Scholar
  14. 14.
    Liu Z, Liu X, Jiang X, Zhang H, Qian H and Zou D, Part Sci Technol. (2016). doi: 10.1080/02726351.2016.1192573.Google Scholar
  15. 15.
    Li H, Jing H, Han Y, Lu GQ and Xu L, Mater Chem Phys. 143 (2013) 400.CrossRefGoogle Scholar
  16. 16.
    Suriyanarayana C and Grant Norton M, X-Ray Diffraction A Practical Approach, Springer Science + Business Media, LLC, 1998.Google Scholar
  17. 17.
    Usenko A A, Moskovskikh D O, Gorshenkov M V, Korotitskiy A V, Kaloshkin S D, Voronin A I and Khovaylo V V, Scripta Mater. 96 (2015) 9.CrossRefGoogle Scholar
  18. 18.
    Ungár T, Gubicza J, Tichy G, Pantea C and Zerda T W, Compos Part A Appl Sci Manuf, 36 (2005) 431.CrossRefGoogle Scholar
  19. 19.
    Mehringer C, Wagner R, Jakuttis T, Butz B, Spiecker E and Peukert W, J Aerosol Sci. 67 (2014) 119.CrossRefGoogle Scholar
  20. 20.
    Narayana J, Scripta Mater. 68 (2013) 785.CrossRefGoogle Scholar
  21. 21.
    Wang D and Shen J, Powder Metall, 58:5 (2015) 363.CrossRefGoogle Scholar
  22. 22.
    Chua A S, Brochu M and Bishop D P, Powder Metall. 58(1) (2015) 51.CrossRefGoogle Scholar
  23. 23.
    Ke H U, Xiao-qiang L I, Chao Y and LI Y Y, T Nonferr Metal Soc. 21 (2011) 493.CrossRefGoogle Scholar
  24. 24.
    Muccillo R and Muccillo E N S, J Eur Ceram Soc. 33 (2013) 515.CrossRefGoogle Scholar
  25. 25.
    Narayanan J, Scripta Mater. 69 (2013) 107.CrossRefGoogle Scholar
  26. 26.
    Groza J R and Zavaliangos A. Mater Sci Eng A. 287 (2007) 171.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • R. Murugasami
    • 1
  • P. Vivekanandhan
    • 1
  • S. Kumaran
    • 1
  • R. Suresh Kumar
    • 2
  • T. John Tharakan
    • 2
  1. 1.Green Energy Materials and Manufacturing Research Group, Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Liquid Propulsion Systems CentreIndian Space Research OrganisationThiruvananthapuramIndia

Personalised recommendations