Skip to main content

Advertisement

Log in

Processing of TiCN–WC–Ni/Co Cermets via Conventional and Spark Plasma Sintering Technique

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present research, the effect of TaC addition as ternary carbide on the microstructure and mechanical properties of dense Ti(CN)–WC–Ni/Co cermets processed via powder metallurgy route by conventional and SPS sintering technique was investigated. XRD patterns of SPS sintered cermets revealed peak broadening confirming evolution of refined carbide size during sintering. Sintered cermets showed Ti(CN) core and (Ti,W)(CN)/(Ti,W,Ta)(CN) rim solid solution. Least contiguity (C) of the ceramic particles and largest mean free path (λ) of the binder phase was observed for the cermet having TaC and Ni–Co addition. Hardness and fracture toughness of the TiCN based cermets prepared via conventional sintering varied from 14–16 GPa and 8.75–9.25 MPa m1/2 and via SPS technique varied from 15–17 GPa and 8.79–9.51 MPa m1/2. Nano hardness of different phases varied from 9.83 to 26.01 GPa for sintered cermets. Refined carbide size and least fraction of adjacent ceramic phase resulted in improved properties of TaC added TiCN–WC–Ni/Co cermet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ettmayer P, Kolaska H, Lengauer W, and Dreyer K, Int J Ref Met Hard Mater 13 (1995) 343.

    Article  Google Scholar 

  2. Zhang H, Yan J, Zhang X, and Tang S, Int J Ref Met Hard Mater 24 (2006) 236.

    Article  Google Scholar 

  3. Zhang S, Mat Sci Eng, 163 A (1993) 141.

    Article  Google Scholar 

  4. Dusza J, Parilak L, and Slesar M, Ceram Int 13 (1987) 133.

    Article  Google Scholar 

  5. Moskowitz D, and Humenik M. Cemented Titanium Carbide Cutting Tools. 3rd vol. Modern developments in powder metallurgy; (1966).

  6. Sundararajan G, and Suresh Babu P, Trans of The Ind Inst Of Met 62 (2009) 95.

    Article  Google Scholar 

  7. Ricardo H. R. Castro. Overview of Conventional Sintering. 35th vol. Sintering; (2012).

  8. Guillon O, Julian J G, Dargatz B, Kessel T, Schierning G, Rathel J, and Herrmann M, Adv Eng Mater 16 (2014) 830.

    Article  Google Scholar 

  9. Pastor H, Mat Sci Eng A 105 (1988) 401.

    Article  Google Scholar 

  10. Jeon E T, Joardar J, and Kang S, Int J Ref Met Hard Mater 20 (2002) 207.

    Article  Google Scholar 

  11. Borrell A, Salvador M D, Rocha V G, Fernandez A, Aviles M A, and Gotor F J, Mat Res Bulletin 47 (2012) 4487.

    Article  Google Scholar 

  12. Gong J, Pan X, Miao H, and Zhao Z, Mater Sci Eng A 359 (2003) 391.

    Article  Google Scholar 

  13. Gruss W W, in Metals Handbook, 9th edn, vol 16, (ed) Burdes B P, Am Soc Met, Metals Park, (1989), p 90.

  14. Rowcliffe D J, and Hollox G E, J Mater Sci 6 (1971) 1261.

    Article  Google Scholar 

  15. Rowcliffe D J, and Warren W J, J Mater Sci 5 (1970) 345.

    Article  Google Scholar 

  16. Xiong J, Guo Z, Shen B, and Cao D, Mater Des 28 (2007) 1689.

    Article  Google Scholar 

  17. Kiani S, Yang J M, and Kodambaka S, J Am Ceram Soc 98 (2015) 1.

    Article  Google Scholar 

  18. Ahn S Y, Kang S, J Am Ceramic Soc 83 (2000) 1489.

    Article  Google Scholar 

  19. Shetty D K, Wright I G, Mincer P N, and Clauer A H, J Mater Sci 20 (1985) 1873.

    Article  Google Scholar 

  20. Ping F, Hao X W, Yong Z, Xin Y L, and Hua X Y, J Wuhan Univ of Tech Mater Sci 19 (2004) 69.

    Article  Google Scholar 

  21. Kwon W T, Park J S, Kim S W, and Kang S, Int J Mac Tools & Manu 44 (2004) 341.

    Article  Google Scholar 

  22. Manoj Kumar B V M, Basu B, Vizintin O, and Kalin M, J Mat Res 23 (2008) 1214.

    Article  Google Scholar 

  23. Xiong J, Guo Z X, Yang M, and Shen B L, Int J Ref Met Hard Mater 26 (2008) 212.

    Article  Google Scholar 

  24. Hussainova I, Wear 255 (2003) 121.

    Article  Google Scholar 

  25. Alvarez M, and Sanchez J M, Int J Ref Met Hard Mater 25 (2007) 107.

    Article  Google Scholar 

  26. Zheng Y, Wang S, You M, Tana H, and Xiong W, Mater Chem Phys 92 (2005) 64.

    Article  Google Scholar 

  27. Park D S, Lee Y D, and Kang S, J Am Ceram Soc 54 (1999), 3150.

    Google Scholar 

  28. Tretyakov V I, and Mashevskaya V I, P. Meta. Met. Ceram. 38 (1999) 64.

    Article  Google Scholar 

  29. Kumar B V M, Ramkumar J, Basu B, and Kang S, Int J Ref Met Hard Mater 25 (2007) 293.

    Article  Google Scholar 

  30. Krupp F. Hard Alloy for Working Instruments and Tools. French Patent 715148A. (1931) p 2004.

  31. Kieffer R, Ettmayer P, and Freudhofmeier M, Metall 25 (1971) 1335.

    Google Scholar 

  32. lyori Y, and Yokoo H. Patente Cermet Alloys and Composite Mechanical Parts Made by Employing Them. US Patent 4983212 A.(1991) 1.

  33. Liu N, Liu C L, and Zhao X Z, Cem Carbide 11 (1994) 144.

    Google Scholar 

  34. Liu N, Zhao X Z, and Liu C L, Phys Test Chem Anal A-Phys Test, 31 (1995) 13.

    Google Scholar 

  35. Zhang J, Liu C L, and Hu Z H, Powder Metall Technol 15 (1997) 122.

    Google Scholar 

  36. Zackrisson J, and Andren H O, Int J Ref Met Hard Mater 17 (1999) 265.

    Article  Google Scholar 

  37. Ahn S Y, and Kang S, J Am Ceram Soc 83 (2003) 1489.

    Article  Google Scholar 

  38. Zackrisson J, Rollander U, and Andren H O, Metall Mater Trans A 2 (2001) 85.

    Article  Google Scholar 

  39. Liu N, Han C L, Xu Y D, Chao S, Shi M, and Feng J P, Mater Sci Eng A 382 (2004) 122.

    Article  Google Scholar 

  40. Park S, and Kang S, Scripta Mater 52 (2005) 129.

    Article  Google Scholar 

  41. Liu N, Chao S, and Yang H D, Int J Ref Met Hard Mater 24 (2006) 445.

    Article  Google Scholar 

  42. Cardinal S, Malchere A, Garnier V, and Fantozzi G, Int J Ref Met Hard Mater 27 (2009) 521.

    Article  Google Scholar 

  43. Zhang H A, Yan D K, and Tang S W, Rare Met 29 (2010) 528.

    Article  Google Scholar 

  44. Liu Y, Jin Y Z, Yu H J, and Ye J W, Int J Ref Met Hard Mater 29 (2011) 104.

    Article  Google Scholar 

  45. Kim Y S, Kwon W T, Seo M, and Kang S, Int J Preci. Eng.Manf 13 (2012) 941.

    Article  Google Scholar 

  46. Mun S, and Kang S, Powder Metallurgy, 42 (1999) 251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V., Manoj Kumar, B.V. Processing of TiCN–WC–Ni/Co Cermets via Conventional and Spark Plasma Sintering Technique. Trans Indian Inst Met 70, 843–853 (2017). https://doi.org/10.1007/s12666-017-1069-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1069-y

Keywords

Navigation