Skip to main content

Advertisement

Log in

Microstructure and High Temperature Impression Creep Properties of Mg–3Ca–xZr (x = 0.3, 0.6, 0.9 wt%) Alloys

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The current study has investigated the influence of zirconium (Zr) addition to Mg–3Ca–xZr (x = 0.3, 0.6, 0.9 wt%) alloys prepared using argon arc melting on the microstructure and impression properties at 448–498 K under constant stress of 380 MPa. Microstructural analysis of as-cast Mg–3Ca–xZr alloys showed grain refinement with Zr addition. The observed grain refinement was attributed to the growth restriction effect of Zr in hypoperitectic Mg–3Ca–0.3 wt% Zr alloys. Heterogeneous nucleation of α-Mg in properitectic Zr during solidification resulted in grain refinement of hyperperitectic Mg–3Ca–0.6 wt% Zr and Mg–3Ca–0.9 wt% Zr alloys. The hardness of Mg–3Ca–xZr alloys increased as the amount of Zr increased due to grain refinement and solid solution strengthening of α-Mg by Zr. Creep resistance of Mg–3Ca–xZr alloys increased with the addition of Zr due to solid solution strengthening of α-Mg by Zr. The calculated activation energy (Qa) for Mg–3Ca samples (131.49 kJ/mol) was the highest among all alloy compositions. The Qa values for 0.3, 0.6 and 0.9 wt% Zr containing Mg–3Ca alloys were 107.22, 118.18 and 115.24 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kainer K U, MagnesiumAlloys and Technology. WILEY-VCH Verlag GmbH & Co, Weinheim (2003).

    Book  Google Scholar 

  2. Polmear I. and John D S, Light Alloys: From Traditional Alloys to Nanocrystals, (4th ed). Butterwoth-Heinemann, Oxford (2005).

    Google Scholar 

  3. Jeong Y S and Kim W J, Corros Sci 82 (2014) 392.

    Article  Google Scholar 

  4. Yang M, Cheng L, Pan F, Li S S, Tang B, and Zeng D B, Trans Nonferrous Met Soc China 437 5 (2007) 317.

    Google Scholar 

  5. Lee Y C, Dahle A K, and St John D H, Metall Mater Trans A 31a (2000) 2895.

  6. StJohn D H, Qian M, Easton M A, Cao P, and Hildebrand Z, Metall Mater Trans A 36 7 (2005) 1669.

    Article  Google Scholar 

  7. Friedrich H E and Mordike B L, Magnesium Technology: Metallurgy, Design Data, Applications, Springer, Berlin (2006).

    Google Scholar 

  8. Li J C M, Mater Sci Eng A 322 (2002) 23.

    Article  Google Scholar 

  9. Spigarelli S, Ruano O A, El Mehtedi M, and del Valle J A, Mater Sci Eng A 570 (2013) 135.

    Article  Google Scholar 

  10. Sastry D H, Mater Sci Eng A 409 (2005) 67.

    Article  Google Scholar 

  11. Liu H, Chen Y, Tang Y, Wei S, and Niu G, J Alloys Compd 440 (2007) 122.

    Article  Google Scholar 

  12. Nayeb-Hashemi A A and Clark J B, Bull Alloy Phase Diagr 8 (1987) 29.

    Google Scholar 

  13. Nayeb-Hashemi A A and Clark J B, Phase Diagram of Binary Magnesium Alloys, ASM International, Ohio (1988).

    Google Scholar 

  14. Wang F, Liu Z L, Qiu D, Taylor J A, Easton M A, and Zhang M X, Metall Mater Transf A 46 (2015) 505.

    Article  Google Scholar 

  15. Roylance D, The Dislocation Basis of Yield and Creep, Modules in Mechanics (2001). Available at http://web.mit.edu/course/3/3.11/www/modules/.

  16. Dieter G E, Mechanica Metallurgy, McGraw-Hill Book Company, New York (1961).

    Google Scholar 

  17. Suresh K, Rao K P, Prasad Y V R K, Hort N, and Kainer K U, Trans Nonferrous Met Soc China (Engl Ed) 23 (2013) 3604.

    Article  Google Scholar 

  18. Frost H J and Ashby M F, Deformation-Mechanism Map, The plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford (1982).

    Google Scholar 

  19. Yang F and Li J C M, Mater Sci Eng R 74 (2013) 233.

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support provided by Universiti Teknologi MARA, Malaysia during the implementation of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Kumar Talari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darham, W., Anis, A.L., Arif, I.A.M. et al. Microstructure and High Temperature Impression Creep Properties of Mg–3Ca–xZr (x = 0.3, 0.6, 0.9 wt%) Alloys. Trans Indian Inst Met 70, 649–654 (2017). https://doi.org/10.1007/s12666-017-1068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1068-z

Keywords

Navigation