Microstructure and High Temperature Impression Creep Properties of Mg–3Ca–xZr (x = 0.3, 0.6, 0.9 wt%) Alloys

  • Widyani Darham
  • Ahmad Lutfi Anis
  • Izzul Adli Mohd Arif
  • Nagamothu Kishore Babu
  • Mohamad Kamal Harun
  • Mahesh Kumar Talari
Technical Paper


The current study has investigated the influence of zirconium (Zr) addition to Mg–3Ca–xZr (x = 0.3, 0.6, 0.9 wt%) alloys prepared using argon arc melting on the microstructure and impression properties at 448–498 K under constant stress of 380 MPa. Microstructural analysis of as-cast Mg–3Ca–xZr alloys showed grain refinement with Zr addition. The observed grain refinement was attributed to the growth restriction effect of Zr in hypoperitectic Mg–3Ca–0.3 wt% Zr alloys. Heterogeneous nucleation of α-Mg in properitectic Zr during solidification resulted in grain refinement of hyperperitectic Mg–3Ca–0.6 wt% Zr and Mg–3Ca–0.9 wt% Zr alloys. The hardness of Mg–3Ca–xZr alloys increased as the amount of Zr increased due to grain refinement and solid solution strengthening of α-Mg by Zr. Creep resistance of Mg–3Ca–xZr alloys increased with the addition of Zr due to solid solution strengthening of α-Mg by Zr. The calculated activation energy (Qa) for Mg–3Ca samples (131.49 kJ/mol) was the highest among all alloy compositions. The Qa values for 0.3, 0.6 and 0.9 wt% Zr containing Mg–3Ca alloys were 107.22, 118.18 and 115.24 kJ/mol, respectively.


Mg–3Ca Zirconium Grain refinement Impression creep 



Authors acknowledge the financial support provided by Universiti Teknologi MARA, Malaysia during the implementation of this project.


  1. 1.
    Kainer K U, MagnesiumAlloys and Technology. WILEY-VCH Verlag GmbH & Co, Weinheim (2003).CrossRefGoogle Scholar
  2. 2.
    Polmear I. and John D S, Light Alloys: From Traditional Alloys to Nanocrystals, (4th ed). Butterwoth-Heinemann, Oxford (2005).Google Scholar
  3. 3.
    Jeong Y S and Kim W J, Corros Sci 82 (2014) 392.CrossRefGoogle Scholar
  4. 4.
    Yang M, Cheng L, Pan F, Li S S, Tang B, and Zeng D B, Trans Nonferrous Met Soc China 437 5 (2007) 317.Google Scholar
  5. 5.
    Lee Y C, Dahle A K, and St John D H, Metall Mater Trans A 31a (2000) 2895.Google Scholar
  6. 6.
    StJohn D H, Qian M, Easton M A, Cao P, and Hildebrand Z, Metall Mater Trans A 36 7 (2005) 1669.CrossRefGoogle Scholar
  7. 7.
    Friedrich H E and Mordike B L, Magnesium Technology: Metallurgy, Design Data, Applications, Springer, Berlin (2006).Google Scholar
  8. 8.
    Li J C M, Mater Sci Eng A 322 (2002) 23.CrossRefGoogle Scholar
  9. 9.
    Spigarelli S, Ruano O A, El Mehtedi M, and del Valle J A, Mater Sci Eng A 570 (2013) 135.CrossRefGoogle Scholar
  10. 10.
    Sastry D H, Mater Sci Eng A 409 (2005) 67.CrossRefGoogle Scholar
  11. 11.
    Liu H, Chen Y, Tang Y, Wei S, and Niu G, J Alloys Compd 440 (2007) 122.CrossRefGoogle Scholar
  12. 12.
    Nayeb-Hashemi A A and Clark J B, Bull Alloy Phase Diagr 8 (1987) 29.Google Scholar
  13. 13.
    Nayeb-Hashemi A A and Clark J B, Phase Diagram of Binary Magnesium Alloys, ASM International, Ohio (1988).Google Scholar
  14. 14.
    Wang F, Liu Z L, Qiu D, Taylor J A, Easton M A, and Zhang M X, Metall Mater Transf A 46 (2015) 505.CrossRefGoogle Scholar
  15. 15.
    Roylance D, The Dislocation Basis of Yield and Creep, Modules in Mechanics (2001). Available at
  16. 16.
    Dieter G E, Mechanica Metallurgy, McGraw-Hill Book Company, New York (1961).Google Scholar
  17. 17.
    Suresh K, Rao K P, Prasad Y V R K, Hort N, and Kainer K U, Trans Nonferrous Met Soc China (Engl Ed) 23 (2013) 3604.CrossRefGoogle Scholar
  18. 18.
    Frost H J and Ashby M F, Deformation-Mechanism Map, The plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford (1982).Google Scholar
  19. 19.
    Yang F and Li J C M, Mater Sci Eng R 74 (2013) 233.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • Widyani Darham
    • 1
  • Ahmad Lutfi Anis
    • 1
  • Izzul Adli Mohd Arif
    • 1
  • Nagamothu Kishore Babu
    • 2
  • Mohamad Kamal Harun
    • 1
  • Mahesh Kumar Talari
    • 1
  1. 1.Faculty of Applied SciencesUniversiti Teknologi MARAShah AlamMalaysia
  2. 2.Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Advanced Materials ProcessingThunSwitzerland

Personalised recommendations