Advertisement

Tensile Properties and Tensile Fracture Characteristics of Cast Al–Zn–Mg Alloys Processed by Equal Channel Angular Pressing

  • G. K. Manjunath
  • G. V. Preetham Kumar
  • K. Udaya Bhat
Technical Paper

Abstract

In the present work, as-cast Al–5Zn–2Mg, Al–10Zn–2Mg and Al–15Zn–2Mg alloys were ECAP processed and tensile tests were carried out to determine the strength and ductility. After tensile testing, morphology of the fracture surfaces of tensile tested samples were studied. After ECAP processing, significant improvement in the yield stress and ultimate tensile strength were observed in all the three alloys. Also, yield stress and ultimate tensile strength were increased with increase in the zinc content of the material. The elongation to failure increased significantly with increase in the number of ECAP passes. SEM micrographs revealed that, the fracture surface of the cast samples of the alloys were composed of the dendritic structure, while the ECAP processed samples consisted of small size dimples. Size of the dimples were reduced with the increase in the number of ECAP passes.

Keywords

ECAP Al–Zn–Mg alloy Ultimate tensile strength Elongation to failure Fracture morphology 

References

  1. 1.
    Valiev R Z, Islamgaliev R K, and Alexandrov I V, Prog Mater Sci 45 (2000) 103.CrossRefGoogle Scholar
  2. 2.
    Langdon T G, Furukawa M, Nemoto M, and Horita, Jom 52 (2000) 30.Google Scholar
  3. 3.
    Segal V M, Raznikov V I, Drobyshewsky A E, and Kopylov V I, Russian Metallurgy 1 (1981) 99.Google Scholar
  4. 4.
    Zehetbauer Y T, and Zhu M J, Bulk Nanostrucutred Materials, Wiley-VCH, Weinheim (2009).CrossRefGoogle Scholar
  5. 5.
    Shaeri M H, Salehi M T, Seyyedein S H, Abutalebi M R, and Park J K, Mater. Des. 57 (2014) 250.CrossRefGoogle Scholar
  6. 6.
    Prados E, Sordi V, and Ferrante M, Mater. Sci. Eng. A 503 (2009) 68.CrossRefGoogle Scholar
  7. 7.
    El Aal M I A., El Mahallawy N, Shehata F A, El Hameed M A, Yoon E Y, Lee, J H, & Kim H S, Met. Mater. Int. 16 (2010) 709.CrossRefGoogle Scholar
  8. 8.
    El Aal M I A, Mater. Sci. Eng. A 539 (2012) 308.CrossRefGoogle Scholar
  9. 9.
    Purcek G, Saray O, Karaman I, and Kucukomeroglu T, Mater. Sci. Eng. A 490 (2008) 403.CrossRefGoogle Scholar
  10. 10.
    Ma A, Saito N, Takagi M, Nishida Y, Iwata H, Suzuki K, Shigematsu I, and Watazu A, Mater. Sci. Eng. A 395 (2005) 70.CrossRefGoogle Scholar
  11. 11.
    Nakashima K, Horita Z, Nemoto M, and Langdon T G, Mater. Sci. Eng. A 281 (2000) 82.CrossRefGoogle Scholar
  12. 12.
    Zhang S, Hu W, Berghammer R, and Gottstein G, Acta Mater. 58 (2010) 6695.CrossRefGoogle Scholar
  13. 13.
    Chinh N Q, Jenei P, Gubicza J, Bobruk E V, Valiev R Z, and Langdon T G, Mater. Lett. 186 (2017) 334.CrossRefGoogle Scholar
  14. 14.
    El Mahallawy N, Shehata F A, El Hameed M A, and El Aal M I A, Mater. Sci. Eng. A 517 (2009) 46.CrossRefGoogle Scholar
  15. 15.
    Saray O, and Purcek G, J. Mater. Process. Technol. 209 (2009) 2488.CrossRefGoogle Scholar
  16. 16.
    El Aal M I A, Mater. Sci. Eng. A, 528 (2011) 6946.CrossRefGoogle Scholar
  17. 17.
    Duan Z C, Chinh N Q, Xu C, and Langdon T G, Metall. Mater. Trans. A 41 (2010) 802.CrossRefGoogle Scholar
  18. 18.
    Fang D R, Zhang Z F, Wu S D, Huang C X, Zhang H, Zhao N Q and Li J J, Mater. Sci. Eng. A 426 (2006) 305.CrossRefGoogle Scholar
  19. 19.
    Fang D R, Duan Q Q, Zhao N Q, Li J J, Wu S D and Zhang Z F, Mater. Sci. Eng. A 459 (2007) 137.CrossRefGoogle Scholar
  20. 20.
    Vinogradov A, Ishida T, Kitagawa K and Kopylov V I, Acta Mater. 53 (2005) 2181.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaSurathkal, MangaloreIndia

Personalised recommendations