Understanding the Low Cycle Fatigue Behavior of Single Crystal Cu at the Nano-scale: A Molecular Dynamics Study

Technical Paper
  • 122 Downloads

Abstract

Understanding the mechanical behavior of the key elements in alloys, at the nano scale leads to the design of optimum microstructure against fatigue failure. In the present study, low cycle fatigue simulations have been carried out on defect free single crystal Cu (face centered cubic) nano wire of size about 7.23 × 7.23 × 14.46 nm (aspect ratio of 2:1) at temperature 10 K by using molecular dynamics simulations. Yielding was found to be initiated from corners of the nano wire by forming stacking faults. It was observed that cyclic stress response of the model system depended on microstructure which was at the starting of reverse loading. Potential energy was used as a tool to investigate the fatigue deformation characteristics of the Cu nano wire. It was observed that the competition between hexagonal close packed atoms and disordered atoms [especially point defects, surface atoms and non-crystalline atoms (other than surface atoms)] governed the cyclic characteristics of the model system.

Keywords

Copper Molecular dynamics Low cycle fatigue Potential energy LAMMPS Disordered atoms 

Notes

Acknowledgements

The authors gratefully acknowledge Dr. A. K. Baduri, Director, IGCAR and Dr. G. Amarendra, Group Director, Metallurgy and Materials Group, IGCAR and for their keen interest in this investigation.

References

  1. 1.
    Zhou X L, Li X Y, and Chen C Q, Acta Mater 99 (2015) 77.CrossRefGoogle Scholar
  2. 2.
    Soppa E A, Kohler C, and Roos E, Mater Sci Eng A 597 (2014) 128.CrossRefGoogle Scholar
  3. 3.
    Tsuru T, Aoyagi Y, Kaji Y, and Shimokawa T, Model Simul Mater Sci Eng 24 (2016) 035010.CrossRefGoogle Scholar
  4. 4.
    Zhu D, Zhang H, and Li D Y, J Appl Phys 110 (2011) 124911.CrossRefGoogle Scholar
  5. 5.
    Sainath G, Rohith P, and Choudhary B K, Trans Indian Inst Metals 69 (2016) 489.CrossRefGoogle Scholar
  6. 6.
    Nishimura K, and Miyazaki N, Comput Mater Sci 31 (2004) 269.CrossRefGoogle Scholar
  7. 7.
    Wu W P, Li Y L, and Sun X Y, Comput Mater Sci 109 (2015) 66.CrossRefGoogle Scholar
  8. 8.
    Yang Z, Zhou Y, Wang T, Liu Q, and Lu Z, Comput Mater Sci 82 (2014) 17.CrossRefGoogle Scholar
  9. 9.
    Yamakov V, Wolf D, Phillpot S R, and Gleiter H, Acta Mater 50 (2002) 5005.CrossRefGoogle Scholar
  10. 10.
    Potirniche G P, Horstemeyer M F, Jelinek B, and Wagner G J, Int J Fatigue 27 (2005) 1179.CrossRefGoogle Scholar
  11. 11.
    Chang W J, Microelectron Eng 65 (2003) 239.CrossRefGoogle Scholar
  12. 12.
    Chen L J, Metall Mater Trans A 47 (2016) 5845, doi: 10.1007/s11661-016-3477-8.CrossRefGoogle Scholar
  13. 13.
    Plimpton S J, J Comput Phys 117 (1995) 1.CrossRefGoogle Scholar
  14. 14.
    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, and Kress J D, Phys Rev B 63 (2001) 224106.CrossRefGoogle Scholar
  15. 15.
    Foiles S M, Baskes M I, and Daw M S, Phys Rev B 33 (1986) 7983.CrossRefGoogle Scholar
  16. 16.
    Nose S, Mol Phys 52 (1984) 255.CrossRefGoogle Scholar
  17. 17.
    Hoover W G, Phys Rev A 31 (1985) 1695.CrossRefGoogle Scholar
  18. 18.
    Zimmerman J A, Webb E B, Hoyt J J, Jones R E, Klein P A, and Bammann D J, Model Simul Mater Sci Eng 12 (2003) 319.CrossRefGoogle Scholar
  19. 19.
    Li J, Model Simul Mater Sci Eng 11 (2003) 173.CrossRefGoogle Scholar
  20. 20.
    Kelchner C L, Plimpton S J, and Hamilton J C, Phy Rev B 58 (1998) 11085.CrossRefGoogle Scholar
  21. 21.
    Stuckowski A, and Albe K, Model Simul Mater Sci Eng 18 (2010) 025016.CrossRefGoogle Scholar
  22. 22.
    Ji C, and Park H S, Nanotechnology 18 (2007) 305704.CrossRefGoogle Scholar
  23. 23.
    Sutrakar V K, and Mahapatra D R, J Phys Condens Matter 20 (2008) 1.CrossRefGoogle Scholar
  24. 24.
    Faken D, and Jonsson H, Comput Mater Sci 2 (1994) 279.CrossRefGoogle Scholar
  25. 25.
    Tsuzuki H, Branico P S, and Rino J P, Comput Phys Commun 177 (2007) 518.CrossRefGoogle Scholar
  26. 26.
    González R, Piqueras J, and Brú L, Phys Stat Sol (a) 29 (1975) 161.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • J. Veerababu
    • 1
  • Sunil Goyal
    • 1
  • R. Sandhya
    • 1
  • K. Laha
    • 1
  1. 1.Mechanical Metallurgy DivisonIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations