Skip to main content
Log in

Understanding the Low Cycle Fatigue Behavior of Single Crystal Cu at the Nano-scale: A Molecular Dynamics Study

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Understanding the mechanical behavior of the key elements in alloys, at the nano scale leads to the design of optimum microstructure against fatigue failure. In the present study, low cycle fatigue simulations have been carried out on defect free single crystal Cu (face centered cubic) nano wire of size about 7.23 × 7.23 × 14.46 nm (aspect ratio of 2:1) at temperature 10 K by using molecular dynamics simulations. Yielding was found to be initiated from corners of the nano wire by forming stacking faults. It was observed that cyclic stress response of the model system depended on microstructure which was at the starting of reverse loading. Potential energy was used as a tool to investigate the fatigue deformation characteristics of the Cu nano wire. It was observed that the competition between hexagonal close packed atoms and disordered atoms [especially point defects, surface atoms and non-crystalline atoms (other than surface atoms)] governed the cyclic characteristics of the model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou X L, Li X Y, and Chen C Q, Acta Mater 99 (2015) 77.

    Article  Google Scholar 

  2. Soppa E A, Kohler C, and Roos E, Mater Sci Eng A 597 (2014) 128.

    Article  Google Scholar 

  3. Tsuru T, Aoyagi Y, Kaji Y, and Shimokawa T, Model Simul Mater Sci Eng 24 (2016) 035010.

    Article  Google Scholar 

  4. Zhu D, Zhang H, and Li D Y, J Appl Phys 110 (2011) 124911.

    Article  Google Scholar 

  5. Sainath G, Rohith P, and Choudhary B K, Trans Indian Inst Metals 69 (2016) 489.

    Article  Google Scholar 

  6. Nishimura K, and Miyazaki N, Comput Mater Sci 31 (2004) 269.

    Article  Google Scholar 

  7. Wu W P, Li Y L, and Sun X Y, Comput Mater Sci 109 (2015) 66.

    Article  Google Scholar 

  8. Yang Z, Zhou Y, Wang T, Liu Q, and Lu Z, Comput Mater Sci 82 (2014) 17.

    Article  Google Scholar 

  9. Yamakov V, Wolf D, Phillpot S R, and Gleiter H, Acta Mater 50 (2002) 5005.

    Article  Google Scholar 

  10. Potirniche G P, Horstemeyer M F, Jelinek B, and Wagner G J, Int J Fatigue 27 (2005) 1179.

    Article  Google Scholar 

  11. Chang W J, Microelectron Eng 65 (2003) 239.

    Article  Google Scholar 

  12. Chen L J, Metall Mater Trans A 47 (2016) 5845, doi:10.1007/s11661-016-3477-8.

    Article  Google Scholar 

  13. Plimpton S J, J Comput Phys 117 (1995) 1.

    Article  Google Scholar 

  14. Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, and Kress J D, Phys Rev B 63 (2001) 224106.

    Article  Google Scholar 

  15. Foiles S M, Baskes M I, and Daw M S, Phys Rev B 33 (1986) 7983.

    Article  Google Scholar 

  16. Nose S, Mol Phys 52 (1984) 255.

    Article  Google Scholar 

  17. Hoover W G, Phys Rev A 31 (1985) 1695.

    Article  Google Scholar 

  18. Zimmerman J A, Webb E B, Hoyt J J, Jones R E, Klein P A, and Bammann D J, Model Simul Mater Sci Eng 12 (2003) 319.

    Article  Google Scholar 

  19. Li J, Model Simul Mater Sci Eng 11 (2003) 173.

    Article  Google Scholar 

  20. Kelchner C L, Plimpton S J, and Hamilton J C, Phy Rev B 58 (1998) 11085.

    Article  Google Scholar 

  21. Stuckowski A, and Albe K, Model Simul Mater Sci Eng 18 (2010) 025016.

    Article  Google Scholar 

  22. Ji C, and Park H S, Nanotechnology 18 (2007) 305704.

    Article  Google Scholar 

  23. Sutrakar V K, and Mahapatra D R, J Phys Condens Matter 20 (2008) 1.

    Article  Google Scholar 

  24. Faken D, and Jonsson H, Comput Mater Sci 2 (1994) 279.

    Article  Google Scholar 

  25. Tsuzuki H, Branico P S, and Rino J P, Comput Phys Commun 177 (2007) 518.

    Article  Google Scholar 

  26. González R, Piqueras J, and Brú L, Phys Stat Sol (a) 29 (1975) 161.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. A. K. Baduri, Director, IGCAR and Dr. G. Amarendra, Group Director, Metallurgy and Materials Group, IGCAR and for their keen interest in this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Veerababu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veerababu, J., Goyal, S., Sandhya, R. et al. Understanding the Low Cycle Fatigue Behavior of Single Crystal Cu at the Nano-scale: A Molecular Dynamics Study. Trans Indian Inst Met 70, 867–874 (2017). https://doi.org/10.1007/s12666-017-1066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1066-1

Keywords

Navigation