Evaluation of Metal–Ceramic Composite Joint Under Tensile Loads at Elevated Temperature

  • Vijay Petley
  • Shweta Verma
  • K. Saravanan
  • M. Stalin
  • K. Raghavendra
  • K. Venkateswarlu
Technical Paper


An experimental study was undertaken to understand the tensile behavior of metal–ceramic composite joint with bolted configuration. Nickel based super alloy (GTM-Su-263) and SiCf/SiC composite were the material systems with an aerospace grade MJ6 bolt of GTM-Su-718. This bolted assembly was pulled at temperatures 25, 600 and 750 °C which were likely to be experienced in a typical aero engine. In case of metal–ceramic composite joint, the net tensile stress decreased from 110 to 88 MPa with increase in temperature from 25 to 600 °C. Similarly, the bearing stress reduced from 146 to 118 MPa. In all the metal–ceramic composite joints, the fracture initiated at the hole edge experienced the maximum tensile stresses. With further increase in temperature, reduction in the net tensile and bearing strength was significant and was attributed to the oxidation of the interface between the fiber and matrix. SEM studies clearly suggested that debonding and fiber pullout resulted in inferior tensile strength properties at elevated temperatures.


Ceramic matrix composite Nickel super alloy Tensile strength Bearing strength 



The authors would like to thank The Director, Gas Turbine Research Establishment, Bangalore and Director, CSIR-National Aerospace Laboratories, Bangalore for their constant support for carrying out the work. The authors thank Dr. S. Ramachandra, Scientist, Gas Turbine Research Establishment, Bangalore for his valuable suggestions during the execution of the work.


  1. 1.
    DiCarlo J A, and van Roode M, in Proc of GT2006 ASME Turbo Expo 2006: Power for Land, Sea and Air, May 8–11, Barcelona, Spain (2006).Google Scholar
  2. 2.
    Dominy J, Compos Manuf 5 (1994) 69.CrossRefGoogle Scholar
  3. 3.
    Ohnabe H, Masaki S, Onozuka M, Miyahara K, and Sasa T, Compos A 30 (1999) 489.CrossRefGoogle Scholar
  4. 4.
    Bouillon E, Louchet C, Spriet P, Ojard G, Feindel D, Logan C, and Rogers K, Developments in Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings, Vol. 26 (2008), p 207. doi: 10.1002/9780470291283.ch23.
  5. 5.
    Takeda M, Imai Y, and Kagawa Y, Mater Sci Eng A 286 (2000) 312.CrossRefGoogle Scholar
  6. 6.
    Filipuzzini L, Camus G, Naslain R, and Thebault J, J Am Ceram Soc 77 (1994) 459.CrossRefGoogle Scholar
  7. 7.
    Filipuzzini L, and Naslain R, J Am Ceram Soc 77 (1994) 467.CrossRefGoogle Scholar
  8. 8.
    Windish C F Jr, Henager C H Jr, Springer G D, and Jones R H, J Am Ceram Soc 80 (1997) 569.CrossRefGoogle Scholar
  9. 9.
    Zhu S, Kagawa Y, Cao JW, and Mizuno M, Metall Mater Trans A 35 (2004) 2853.CrossRefGoogle Scholar
  10. 10.
    Camus G, Guillaumat L, and Baste S, Compos Sci Technol 56 (1996) 1363.CrossRefGoogle Scholar
  11. 11.
    Jacobsen T K, and Brondsted P, J Am Ceram Soc 84 (2001) 1043.CrossRefGoogle Scholar
  12. 12.
    Wu S, Cheng L, Zhang L, and Xu Y, Metall Mater Trans A 37A (2006) 3587.Google Scholar
  13. 13.
    DiCarlo JA, in Proc of ASME Turbo Expo 2002, Amsterdam, Netherlands, June 3–6 (2002).Google Scholar
  14. 14.
    Agullo J M, Maury F, and Jouin J M, Le Journal de Physique IV, 3 (1993) C3-549.Google Scholar
  15. 15.
    Hähnel A, Pippel E, Schneider R, Woltersdorf J, and Suttor D, Compos A 27A (1996) 685.CrossRefGoogle Scholar
  16. 16.
    Mukherji J, Def Sci J 43 (1993) 385.CrossRefGoogle Scholar
  17. 17.
    Messler R W Jr., Mater Des 16 (1995) 261.CrossRefGoogle Scholar
  18. 18.
    Thoppul SD, Finegan J, and Gibson RF, Compos Sci Technol 69 (2009) 301.CrossRefGoogle Scholar
  19. 19.
    Counts W A, and Johnson W S, Int J Fatigue 24 (2002) 197.CrossRefGoogle Scholar
  20. 20.
    Pisano A A, and Fuschi P, Compos B 42 (2011) 949.CrossRefGoogle Scholar
  21. 21.
    Mangalagiri P D, Dattaguru B, and Rao A K (1985), Comput Math Appl 11 1057.CrossRefGoogle Scholar
  22. 22.
    Ekh J, Schön J, and Zenkert D, Compos Struct 105 (2013) 35.CrossRefGoogle Scholar
  23. 23.
    Gray P G, and McCarthy C T, Compos Struct 94 (2012) 2450.CrossRefGoogle Scholar
  24. 24.
    Ortona A, Pusterla S, and Gianell S, J Eur Ceram Soc 31 (2011) 1821.CrossRefGoogle Scholar
  25. 25.
    Bunting P, Thompson V, Riccardo V, Fusion Eng Des 112 (2016) 42.CrossRefGoogle Scholar
  26. 26.
    Salvo M, Ferrari M, Lemoine P, Montorsi M A, and Merola M, J Nucl Mater 233 (1996) 949.CrossRefGoogle Scholar
  27. 27.
    Weidner K S, Gillespie J W Jr., and Shevchenko N, Compos Struct 93 (2011) 3175.CrossRefGoogle Scholar
  28. 28.
    Böhrk H, and Beyermann U, Compos Struct 92 (2010) 107.CrossRefGoogle Scholar
  29. 29.
    Petley V, Verma S, Ashritha S N, Babu S N, and Ramachandra S in Processing and Properties of Advanced Ceramics and Composites V: Ceramic Transactions, vol. 240. Wiley, Hoboken, p. 21 (2013)CrossRefGoogle Scholar
  30. 30.
    ASTM C 1275-00, Test Method for Monotonic Tensile Behavior of Continuous Fiber-Reinforced Advanced Ceramics with Solid Rectangular Cross-Section Test Specimens at Ambient Temperature. ASTM International. Available from:
  31. 31.
    ASTM C 1359-11, Test Method for Monotonic Tensile Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics With Solid Rectangular Cross-Section Test Specimens at Elevated Temperatures. ASTM International. Available from:
  32. 32.
  33. 33.

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Gas Turbine Research Establishment (GTRE)BangaloreIndia
  2. 2.CSIR-National Aerospace LaboratoriesBangaloreIndia

Personalised recommendations