Interlayer Engineering on Friction Welded Titanium Tube to Stainless Steel Tube Plate by External Tool Process

  • C. Maxwell Rejil
  • S. Muthukumaran
  • C. Sharan
  • S. P. Gill
  • H. B. Dong
Technical Paper
  • 147 Downloads

Abstract

Joining of titanium and stainless steel is challenging due to the formation of hard, brittle intermetallics. This study focuses on engineering ductile materials for joining transition metals. Friction welding of tube to tube-plate by an external tool, a novel solid state welding process was employed to join titanium tube and stainless steel tube plate. The interlayers engineered were copper, silver and Cu–Zn alloy. The micrographs revealed phase transformations in titanium tube and unaffected stainless steel base. Interface peak microhardness of 458 HV was observed for Ti/Cu–Zn/SS welded sample. The intermetallics formed were characterized by X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy. A novel shear test procedure was developed to evaluate the maximum shear load. It was found that joints with silver as interlayer withstood the maximum shear load of 56 kN. The shear surfaces were further analyzed and investigated for fracture study.

Keywords

Interlayer Friction welding Intermetallics Shear load Joint interface 

Notes

Acknowledgements

The authors acknowledge the support by Royal Academy of Engineering, the United Kingdom under higher education partnership program (Project No.: HEPI\1516\49). The authors are thankful to Dr. R. Sathiskumar, Department of Mechanical Engineering, CIT, Coimbatore for his support. The authors also acknowledge Mr. P. Rajesh Kannan, and Mr. P. Bhagat Singh, Research Scholars of Department of MME for their support to execute the work.

References

  1. 1.
    Radosław W, and Mieczysław K, Mater Des 34 (2012) 444.CrossRefGoogle Scholar
  2. 2.
    Senthil Kumaran S, Muthukumaran S, Vinodh S, J Alloys Compd 509 (2011) 2758.CrossRefGoogle Scholar
  3. 3.
    Senthil Kumaran S, and Muthukumaran S, Int J Adv Manuf Technol 75 (2014) 1723.CrossRefGoogle Scholar
  4. 4.
    Balaji G K, Muthukumaran S, Senthilkumaran S, and Pradeep A, J Mater Eng Perform 21 (2011) 1199.CrossRefGoogle Scholar
  5. 5.
    Muthukumaran S, Senthil Kumaran S, and Saket Kumar, Trans Ind Inst Met 64 (2011) 255.CrossRefGoogle Scholar
  6. 6.
    Sun Z, and Karppi R, J Mater Process Technol 59 (1996) 257.CrossRefGoogle Scholar
  7. 7.
    Ghosh M, and Chatterjee S, Mater Character 48 (2002) 393.CrossRefGoogle Scholar
  8. 8.
    Satoh G, Yao Y L, and Qiu C, Int J Adv Manuf Technol 66 (2013) 469.CrossRefGoogle Scholar
  9. 9.
    Ghosh M, and Chatterjee S, Mater Sci Eng A 358 (2003) 152.CrossRefGoogle Scholar
  10. 10.
    Dey H C, Ashfaq M, Bhaduri A K, and Prasad Rao K, J Mater Process Technol 209 (2010) 1829.Google Scholar
  11. 11.
    Sudha C, Prashanthi T N, Thomas Paul V, Saroja S, and Vijayalakshmi M, Met Mat Trans A 43 (2012) 3596.CrossRefGoogle Scholar
  12. 12.
    Vigraman T, Ravindran R, and Narayanaswamy R, Mater Des 36 (2012) 714.CrossRefGoogle Scholar
  13. 13.
    Shanmugarajan B, and Padmanabham G, Opt Laser Eng 50 (2012) 1621.CrossRefGoogle Scholar
  14. 14.
    Wang T, Zhang B, Feng J, and Tang Q, Mater Character 73 (2012) 104.CrossRefGoogle Scholar
  15. 15.
    Kuang B, Shen Y, Chen W, Yao X, Xu H, Gao J, and Zhang J, Mater Des 68 (2015) 54.CrossRefGoogle Scholar
  16. 16.
    Ganjeh E, Sarkhosh H, Khorsand H, Sabet H, Dehkordi E H, and Ghaffari M, Mater Des 39 (2012) 33.CrossRefGoogle Scholar
  17. 17.
    Lee J G, Hong S J, Lee M K, and Rhee C K, J Nucl Mater 395 (2009) 145.CrossRefGoogle Scholar
  18. 18.
    Laik A, Shirzadi A A, Tewari R, Anish K, Jayakumar T, and Dey G K, Met Mat Trans A 44 (2013) 2212.CrossRefGoogle Scholar
  19. 19.
    Maxwell R C, Sharan C, Muthukumaran S, and Vasudevan M, Trans Non Ferr Met Soc China 26 (2016) 2067.CrossRefGoogle Scholar
  20. 20.
    Wang T, Zhang B, Chen G, Feng J, and Tang Q, Trans Non Ferr Met Soc China 20 (2010) 1829.CrossRefGoogle Scholar
  21. 21.
    Meshram S D, Mohandas T, and Madhusudhan Reddy G, J Mater Process Technol 184 (2007) 330.CrossRefGoogle Scholar
  22. 22.
    Kundu S, Chatterjee S, Olson D, and Mishra B, Met Mat Trans A 39A (2008) 2106.CrossRefGoogle Scholar
  23. 23.
    Kundu S, and Chatterjee S, Sci Technol Weld Join 12 (2007) 572.CrossRefGoogle Scholar
  24. 24.
    Balasubramanian M, Int J Adv Manuf Technol 82 (2016) 153.CrossRefGoogle Scholar
  25. 25.
    Becker W T, and Lampman S, Failure Analysis and Prevention Properties, ASM International, Materials Park, Ohio (2002), p 1163.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • C. Maxwell Rejil
    • 1
  • S. Muthukumaran
    • 1
  • C. Sharan
    • 2
  • S. P. Gill
    • 3
  • H. B. Dong
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology, TiruchirappalliTiruchirappalliIndia
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBengaluruIndia
  3. 3.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations