Advertisement

Structural and Optical Properties Correlation of Nickel Doped Magnesium–Titanium Alloys with Sorption Kinetics Reaction for Hydrogen Storage Application

  • Premnath Muthu
  • Kumaran Sinnaeruvadi
Technical Paper
  • 213 Downloads

Abstract

In this work, synthesis of Ni doped Mg–Ti nanostructured alloys were made using mechanical alloying method. The structural and optical properties of Mg–Ti alloys were studied by X-Ray diffraction (XRD), UV–Vis spectroscopy and Density Functional theoritical (DFT) studies. The electrochemical performance of Mg–Ti alloys was studied by cyclic voltammetry and impedance studies. The XRD pattern of 20 h milled powders revealed the formation of Mg(Ti) solid solution, Mg2Ni and TiNi compounds. DFT studies confirmed the strong modification of the valence band structure of the Ni doped Mg–Ti alloys which could significantly hasten the hydrogenation and dehydrogenation properties. UV–Vis spectrum revealed increase in band gap energy due to blue shift and hyperchromic shift in both absorption and transmission peaks. Obviously, electrochemical studies revealed high exchange current density and Warburg impedance, as well as decrease in diffusion coefficient and charge transfer resistance. Ultimately, it showed the result of high catalytic activity and faster kinetic reaction rates for the good reversibility of hydrogen ions.

Keywords

Ni doped Mg–Ti alloy Mechanical alloying Density functional theory Hydrogen storage 

References

  1. 1.
    Zou J, Long S, Chen X, Zeng X, and Ding W, Int J Hydrogen Energy 40 (2015) 1820.CrossRefGoogle Scholar
  2. 2.
    Makridis S S, Gkanas E I, Panagakos G, Kikkinides E S, Stubos A K, Wagener P, and Barcikowski S, Int J Hydrogen Energy 38 (2013) 11530.CrossRefGoogle Scholar
  3. 3.
    Jain I P, Lal C, and Jain A, Int J Hydrogen Energy 35 (2010) 5133.CrossRefGoogle Scholar
  4. 4.
    Jia Y, Sun C, Shen S, Zou J, Mao S S, and Yao X, Renewable Sustainable Energy Rev 44 (2015) 289.CrossRefGoogle Scholar
  5. 5.
    Wu Z, Zhang Z X, Yang F S, Feng P H, and Wang Y Q, Int J Hydrogen Energy 41 (2016) 2771.CrossRefGoogle Scholar
  6. 6.
    Zou J, Zeng X, Ying Y, Chen X, Guo H, Zhou S, and Ding W, Int J Hydrogen Energy 38 (2013) 2337.CrossRefGoogle Scholar
  7. 7.
    Shaoa H, Xin G, Zheng J, Lib X, and Akibaa E, Nano Energy 1 (2012) 590.CrossRefGoogle Scholar
  8. 8.
    Liu T, Wang C, and Wu Y, Int J Hydrogen Energy 39 (2014) 14262.CrossRefGoogle Scholar
  9. 9.
    Chen B H, Kuo C H, Ku J R, Yan P S, Huang C J, Jeng M S, and Tsau F H, J Alloys Comp 568 (2013) 78.CrossRefGoogle Scholar
  10. 10.
    Yao X, Wu C, Du A, Lu G Q, Cheng H, Smith S C, Zou J, and He Y, J Phys Chem B 110 (2006) 11697.CrossRefGoogle Scholar
  11. 11.
    Long S, Zou J, Chen X, Zeng X, and Ding W, J Alloys Comp 615 (2014) S684.CrossRefGoogle Scholar
  12. 12.
    Suryanarayana C, Prog Mater Sci 46 (2001) 101.CrossRefGoogle Scholar
  13. 13.
    Yuan J, Zhu Y, Li Y, Zhang L, and Li L, Int J Hydrogen Energy 39 (2014) 10184.CrossRefGoogle Scholar
  14. 14.
    Khrussanova M, Grigorova E, Bobet J L, Khristov M, and Peshev P, J Alloys Comp 365 (2004) 308.CrossRefGoogle Scholar
  15. 15.
    Sun N, Xu B, Zhao S, Sun Z, Li X, and Meng L, Int J Hydrogen Energy 40 (2015) 10516.CrossRefGoogle Scholar
  16. 16.
    Zhong H C, Wang H, Ouyang L Z, and Zhu M, J Alloys Comp 509 (2011) 4268.CrossRefGoogle Scholar
  17. 17.
    Yelsukov E P, Dorofeev G A, Ulyanov A L, and Maratkanova A N, Chem Sustainable Development 13 (2005) 191.Google Scholar
  18. 18.
    Sundaresan R, and Froes F H, Metal Powder Rep 44 (1989) 195.Google Scholar
  19. 19.
    Oleszak D, Acta Physica Polonica A 96 (1999) 1.CrossRefGoogle Scholar
  20. 20.
    Jurczyk M, Nowak M, Szajek A, and Jezierski A, Int J Hydrogen Energy 37 (2012) 3652.CrossRefGoogle Scholar
  21. 21.
    Gao J, Hou Z, Ge Q, Zhao D, Guo1 S, and Zhang Y, Mater Sci Appl 1 (2010) 168.Google Scholar
  22. 22.
    Anik M, J Alloys Comp 491 (2010) 565.CrossRefGoogle Scholar
  23. 23.
    Yadav T P, Yadav R M, and Singh D P, Nanosci Nanotechnol 2(3) (2012) 22.CrossRefGoogle Scholar
  24. 24.
    Liang G, J Alloys Comp 370 (2004) 123.CrossRefGoogle Scholar
  25. 25.
    Liang G, and Schulz R, J Metastable Nanocryst Mater 12 (2002) 93.CrossRefGoogle Scholar
  26. 26.
    Liang G, and Schulz R, J Mater Sci 38 (2003) 1179.CrossRefGoogle Scholar
  27. 27.
    Asano K, Enoki H, and Akiba E, Mater Trans 48(2) (2007) 121.CrossRefGoogle Scholar
  28. 28.
    Fukai Y, The Metal Hydrogen System, 2nd ed., Springer, Berlin (2005), p 497.Google Scholar
  29. 29.
    Niessen R A H, and Notten P H L, Electrochem Solid State Lett 8 (2005) 534.CrossRefGoogle Scholar
  30. 30.
    Kalisvaart W P, and Notten P H L, J Mater Res 23 (2008) 2179.CrossRefGoogle Scholar
  31. 31.
    Asano K, Enoki H, and Akiba E, Mater Trans JIM 48 (2007) 121.CrossRefGoogle Scholar
  32. 32.
    Huot J, Ravnsbæk D B, Zhang J, Cuevas F, Latroche M, and Jensen T R, Prog Mater Sci 58 (2013) 30.CrossRefGoogle Scholar
  33. 33.
    Li Y, Tao Y, Ke D, Yang S, and Han S, J Alloys Comp 615 (2014) 91.CrossRefGoogle Scholar
  34. 34.
    Liu T, Cao Y, Li H, Chou W, and Li X, J Power Sources 267 (2014) 598.CrossRefGoogle Scholar
  35. 35.
    Al-Gaashani R, Radiman S, Daud A R, Tabet N, and Al-Douri Y, Ceramics International 39 (2013) 2283.CrossRefGoogle Scholar
  36. 36.
    Wang L, Zhao J, He X, Gao J, Li J, Wan C, and Jiang C, Int J Electrochem Sci 7 (2012) 345.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  1. 1.Green Energy Materials and Manufacturing Research Group, Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTrichyIndia

Personalised recommendations