Advertisement

Fretting Fatigue Behavior of 304 Austenitic Stainless Steel Considering the Effect of Mean Stress and Tensile Overload

  • M. Jayaprakash
  • M. Okazaki
  • Y. Miyashita
  • Y. Otsuka
  • Y. Mutoh
Technical Paper

Abstract

Effect of mean stress on fretting fatigue behavior of 304 austenitic stainless steel has been investigated by conducting fretting fatigue tests at a constant contact pressure of 100 MPa under three different mean stresses i.e., 0, 350 and 450 MPa. For comparisons, plain fatigue tests were also carried out. The influence of tensile overload on fretting fatigue life was also investigated. The results showed that with an increase in mean stress, the reduction in fatigue strength due to fretting increased drastically from 51% at 0 MPa mean stress to 71% at 450 MPa mean stress. The application of tensile overload during fretting fatigue had significant influence on the fretting fatigue lives when the tensile overload was above yield strength. The fretting variables, i.e., tangential stress and relative slip amplitude were measured during fretting fatigue tests. Fracture surfaces were examined using scanning electron microscope. The results have been discussed based on the tangential stress measurement, relative slip amplitude evaluation during fretting fatigue and fracture surface examinations.

Keywords

Fatigue Fretting fatigue Austenitic stainless steel Mean stress Tangential stress Fractography 

References

  1. 1.
    Mutoh Y, JSME Int J Ser A 38 (1995) 405.Google Scholar
  2. 2.
    Waterhouse RB, Int Mater Rev 37 (1992) 77.CrossRefGoogle Scholar
  3. 3.
    Mutoh Y, Nishida T, and Sakamoto I, J Soc Mater Sci Jpn 37 (1988) 649.CrossRefGoogle Scholar
  4. 4.
    Lindley T C, Int J Fatigue 19 (1997) S39.CrossRefGoogle Scholar
  5. 5.
    Lykins C D, Mall S, and Jain V, Fatigue Fract Eng Mater Struct 24 (2001) 461.CrossRefGoogle Scholar
  6. 6.
    Sabelkin V, Martinez S A, Mall S, Sathish S, and Blodett M P, Fatigue Fract Eng Mater Struct 28 (2004) 321.CrossRefGoogle Scholar
  7. 7.
    Jayaprakash M, Mutoh Y, and Yoshii K, Mater Des 32 (2011) 3911c.CrossRefGoogle Scholar
  8. 8.
    Murugesan J, and Mutoh Y Tribol Int l76 (2014) 116.CrossRefGoogle Scholar
  9. 9.
    Szolwinski M P, and Farris T N, Wear 198 (1996) 93.CrossRefGoogle Scholar
  10. 10.
    Jayaprakash M, Mutoh Y, Asai K, Ichikawa K, and Sukurai S, Int J Fatigue 32 (2010) 1788.CrossRefGoogle Scholar
  11. 11.
    Ruiz C, Boddington P H B, and Chen K C, Exp Mech 24 (1984) 208.CrossRefGoogle Scholar
  12. 12.
    Christ H J, Wamukwamba C K, and Mughrabi H, Mater Sci Eng A A234 (1997) 382.CrossRefGoogle Scholar
  13. 13.
    Kamaya M, and Kawakubo M, Int J Fatigue 74 (2015) 20.CrossRefGoogle Scholar
  14. 14.
    Colin J, Fatemi A, and Taheri S, J Eng Mater Technol 132 (2010) 021008.CrossRefGoogle Scholar
  15. 15.
    Miura N, and Takahashi Y, Int J Fatigue 28 (2006) 1618.CrossRefGoogle Scholar
  16. 16.
    Jayaprakash M, Anchalee S, Miyashita Y, Otsuka Y, and Mutoh Y, Int J Fatigue 54 (2013) 99.CrossRefGoogle Scholar
  17. 17.
    JSME S015 Test method for fretting fatigue. JSME (2002).Google Scholar
  18. 18.
    Mentat I I, Users Guide, Marc Analysis Research Corporation, USA (1996).Google Scholar
  19. 19.
    Mutoh Y, and Jayaprakash M, Tribol Int 4 (2011) 1394.CrossRefGoogle Scholar
  20. 20.
    Xu J Q, and Mutoh Y, JSME Int J 45 (2002) 510.CrossRefGoogle Scholar
  21. 21.
    Jayaprakash M, and Ganesh S, Trans Indian Inst Met 59 (2006) 431.Google Scholar
  22. 22.
    Nshioka K, and Hirakawa K, Bull JSME 12 (1969) 692.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2017

Authors and Affiliations

  • M. Jayaprakash
    • 1
  • M. Okazaki
    • 1
  • Y. Miyashita
    • 1
  • Y. Otsuka
    • 2
  • Y. Mutoh
    • 2
  1. 1.Department of Mechanical EngineeringNagaoka University of TechnologyNagaokaJapan
  2. 2.Department of System SafetyNagaoka University of TechnologyNagaokaJapan

Personalised recommendations